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Preface

As its camp�res glow against the dark, every culture tells stories to itself
about how the gods lit up the morning sky and set the wheel of being
into motion. The great scienti�c culture of the west - our culture - is no
exception. The calculus is the story this world �rst told itself as it became
the modern world. - David Berlinski

But how is one to make a scientist understand that there is something
unalterably deranged about di�erential calculus, quantum theory, or the
obscene and so inanely liturgical ordeals of the precession of the equinoxes.
- Antonin Artaud (said tongue-in-cheek no doubt)

Regardless of your Calculus pursuasion, like Shakespeare's plays everyone should see
Calculus at least once in their schooling. Caculus is the language of movement. Anyone who
wishes to learn Calculus can learn it. However, not everyone can read a Calculus textbook.
This is because most math textbooks are written for the instructor, not the student. They
are comprehensive tomes, often over 500 pages, and written so that an instructor can make
a selection of material for a semester based on personal taste. This book is for the student
taking Calculus. The selection of material is already made. All the material presented is
essential (besides the nerdy jokes and cultural asides).

The advantage of having a book like this as the textbook is that the instructor can
expect the students to actually read the material and come prepared to class having done
the �readings.� Every e�ort is made to make the book readable. The standard textbook
format where Chapter 1 is divided into sections, and sections into subsections and so on,
is eschewed in favor of a more narrative style. The standard format with examples labeled
1.3.1.2 is good for an instructor who uses the textbook as a reference manual, but to the
student it reads like a dry code manual. In this book there are no sections and subsections,
just chapters like in a novel.

The graphs in this book are produced using wolframalpha.com which is the free version
of Mathematica. This website has a Google like interface. An equation or function can be
entered into the box somewhat imprecisely and it will understand and solve it or sketch
it. This is a bigger advantage than it sounds. Having to know precise codes for everything
makes using graphic calculators and computer algebra systems tedious. Even one bracket
out of place causes an error. Free software that is intelligent enough to understand what
the user intends to type is a game-changer in the way students can learn Precalculus and
Calculus.

Figures in the book have a simple appearance to emphasize that they can be drawn by
hand. Modern textbook have an impressive array of pictures and �gures that are not only
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iv PREFACE

attention-de�cit inducing, but also leave the reader with the sense that he could never draw
the �gures himself. Conventional wisdom supposes that some people understand information
better when it is presented with words, whereas others prefer a more visual approach. But
in mathematics, the visual approach is not just an alternate pedagogical approach, it is
essential. We understand mathematical objects in terms of pictures. For example, the
object y = x2 is not really meaningful unless it is recognized as the parabola with vertex
(0, 0) that is symmetric about the y-axis. Arguably we use words to convey the pictures we
have in mind.

Right from the beginning students are encouraged to �nd solutions to problems on their
own using freely available resources. The exercises do not come with a solution sheet. In
most cases students can use wolframalpha.com to get the solutions. Students should learn to
work with friends to check their solution and with practice become con�dent that their work
is correct. This book works well for teaching strategies such as �collaborative learning� and
�team-based learning,� which emphasize working in groups. It also works well for the ��ipped
classroom,� where the students have to read and understand each chapter independently
before it is presented in the classroom and class-time is spent discussing the material not
teaching it. It may not be a good idea to completely forgo the old-fashioned lecture style
of teaching mathematics in favor of a new strategy. However, including active learning
components like allowing students to ask questions, requiring them to read ahead and come
prepared to discuss the material, and giving team-based quizzes are e�ective teaching and
learning tools.

This book has few word problems. Word problems in math textbooks are proxy for
real-world applications. They are contrived and often confusing paragraphs that supposedly
capture a situation where math is applied to a real-world situation, but they manage to
remove all the fun out of both the math and the application. The di�culty with doing
applications properly in a math class is that the applications are discipline speci�c and
reqire considerable subject knowledge. There is no time in the mathematics classroom to
give students a solid application from another discipline, without sacr�cing something, and
that something is usually rigor. The best course of action for students is to �rst work through
a few carefully worded problems like the ones in this book to get the ideas straight. As Hardy
said in his 1941 book �A Mathematician's Apology,�

A mathematician, like a painter or a poet, is a maker of patterns. If his
patterns are more permanent than theirs, it is because they are made with
ideas.

Then, based on interest, follow up by looking at one of the websites that specialize in appli-
cations that use Calculus. Don't waste time on arti�cal real-word problems (the oxymoron is
unavoidable). Theory and applications must go hand-in-hand despite an educational system
seemingly set up to make this impossible.

Typically Chapters 1 to 12 (chapter 12 is still unwritten) covering limits and derivatives
corresponds to a 3 or 4 credit Calculus I course lasting 15 weeks, and integration and series is
covered in a Calculus II course. There is considerable sca�olding of topics to gradually move
students toward a stronger understanding, ultimately making them independent learners.
This is why the proofs of theorems appear in a separate chapter at the end. These proofs are



PREFACE v

essential for Calculus II, but not essential for a student who just wants a taste of Caculus.
The proofs become more meaningful after they are used in problem solving. So the focus
throughout is solving problems.

Many students require only a Calculus I course. Putting students who require only
Calculus I in the same class as those who require Calculus I and II causes major problems.
If limits and derivatives are covered rigorously, then students never see the beauty and
importance of integration. If a non-rigorous approach is adopted, then the students going
on to Calculus II have too weak a background to succeed. It is better to o�er students
who require only one calculus course a �Survey of Calculus� that covers both derviatives and
integrals and is known from the beginning to be a �mile-wide and inch-deep.� This book
can be used for such a course by studying limits without emphasizing techniques for �nding
them, omitting all proofs as well as the more complicated derivatives and integrals, and
completely omitting series. Throughout there are footnotes to help students navigate the
material in a non-rigourous fashion. The hope is that such students become interested in
knowing things thoroughly when they realize they can read a math textbook on their own.

We will end with Steven Strogatz's description of Calculus taken from his wonderful New
York Times article �Change we can believe in� that should be required reading for everyone.

Calculus is the mathematics of change. It describes everything from the
spread of epidemics to the zigs and zags of a well-thrown curveball. The
subject is gargantuan - and so are its textbooks. Many exceed 1,000 pages
and work nicely as doorstops. But within that bulk you'll �nd two ideas
shining through. All the rest, as Rabbi Hillel said of the Golden Rule, is just
commentary. Those two ideas are the �derivative� and the �integral.� Each
dominates its own half of the subject, named in their honor as di�erential
and integral calculus. Roughly speaking, the derivative tells you how fast
something is changing; the integral tells you how much it's accumulating.
They were born in separate times and places: integrals, in Greece around
250 B.C.; derivatives, in England and Germany in the mid-1600s. Yet in a
twist straight out of a Dickens novel, they've turned out to be blood relatives
- though it took almost two millennia to see the family resemblance.

The author thanks Professor Miriam Deutch for taking the lead on OpenSource@CUNY, the
faculty and technical sta� on the team, and Brooklyn College for giving a 3-credit course
release to write yet another commentary on one of the greatest discoveries of humanity.



CHAPTER 1

What is a Limit?

Calculus is the study of change. It is a way of making sense of the world we live in. If this
utilitarian argument doesn't appeal to you, then learn Calculus because it is one of the great
achievements of humanity. Study it like you would a great piece of artwork, except that it
isn't tangible and gets drawn in your head with the help of ideas. It does, however, have
considerable prerequistes including algebra, geometry, and trigonometry grouped together
under the umbrella term �Precalculus.� So, assuming you have taken a Precalculus course
let's begin, as the King of Hearts from Alice in Wonderland said, �at the beginning.� which
really isn't the begining at all as we will see later on, but we have to start somewhere.

Example 1.1. Consider the function f(x) = (x−2)2 whose graph is shown in Figure 1.0.1.

Figure 1.0.1. f(x) = (x− 2)2

Observe from the graph 1 that

• As x tends to 2 from the left, f(x) tends to 0;

• As x tends to 2 from the right, f(x) tends to 0.

Graphs in Calculus are �moving images.� Obviously the graph in Figure 1.0.1 is static,
but we must imagine a point on the x-axis moving toward 2 from the left, and at the same

1You should be able to draw the graph of this function by hand. Otherwise, go to wolframalpha.com

and enter the function into the textbox as f(x) = (x-2) caret symbol 2 . Mathematica will draw

a graph with a domain and range it considers suitable. The precise Mathematics code for graphing is

Plot[f(x), {x, min, max}, {y, min, max}] .

1



2 1. WHAT IS A LIMIT?

time a point on the graph of f(x) moving along the curve toward 0. We use the symbol 2−

to denote the phrase �2 from the left� and 2+ to denote the phrase �2 from the right.� We
use → for the phrase �tends to.� The above observation in symbols becomes

• As x −→ 2−, f(x) −→ 0;

• As x −→ 2+, f(x) −→ 0.

We further shorten it using the �limit� notation as follows:

• lim
x→2−

f(x) = 0 (read as �limit as x tends to 2 minus of f of x is 0�);

• lim
x→2+

f(x) = 0.

We call lim
x→2−

f(x) = 0 the left limit and lim
x→2+

f(x) = 0 the right limit. Observe that the

left limit and right limit both exist and are equal. So

lim
x→2−

f(x) = lim
x→2+

f(x) = 0.

In this case we say the limit exists and we write

lim
x→2

f(x) = 0.

Example 1.2. Consider the piecewise function g(x) =

{
3x if x 6= 2

8 if x = 2
whose graph is shown

in Figure 1.0.2.

Figure 1.0.2. The piecewise function g(x) with a hole at 2

A piecewise function is de�ned in di�erent pieces on the domain; hence the name. This
function g(x) is the line y = 3x with a �hole� in it. The hole exists because 3(2) = 6 but at
x = 2 the function takes the value 8. 2

2Piecewise functions have to be entered precisely using Mathematica Code. Enter g(x) as

g(x) = Piecewise[{{3x, x[NotEqual]2}, {8, x=2}}] .
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Observe that
lim
x→2−

g(x) = 6 and lim
x→2+

g(x) = 6.

So,
lim
x→2−

g(x) = lim
x→2+

g(x) = 6.

We say the limit exists and we write

lim
x→2

g(x) = 6.

Observe that, in the �rst example lim
x→2

f(x) = f(2) and in the second example lim
x→2

g(x) 6= g(2)

because lim
x→2

g(x) = 6 and g(2) = 8. However, in both cases the limit exists.

Example 1.3. Consider the piecewise function h(x) =

{
1 if x ≥ 0

−1 if x < 0
whose graph is

shown in Figure 1.0.3.

Figure 1.0.3. The step function h(x)

This piecewise function is de�ned one way on the interval [0,∞) and another way on (−∞, 0).
It is called a step function because it looks like a step. 3 Observe that

lim
x→0−

h(x) = −1 and lim
x→0+

h(x) = 1.

In this example
lim
x→0−

h(x) 6= lim
x→0+

h(x)

When the left and right limits are di�erent, we say lim
x→0

h(x) does not exist or in short

�dne.� Look carefully at h(x) as it is our �rst example where the limit does not exist.

3The Mathematica Code for entering this function is

h(x) = Piecewise[{{1, x >= 0}, {-1, x < 0}}] x from -3 to 3 y from -3 to 3 .
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Example 1.4. Consider the rational function k(x) = 1
x
whose graph is shown in Figure

1.0.4.

Figure 1.0.4. The hyperbola k(x) = 1
x

This function is called a hyperbola.4 The x-axis is the horizontal asymptote and the
y-axis is the vertical asymptote. It is not de�ned at 0 because otherwise we would have
0 in the denominator which is not permissible. 5 Observe that

lim
x→0−

k(x) = −∞ and lim
x→0+

k(x) =∞.

Since
lim
x→0−

k(x) 6= lim
x→0+

k(x)

we may conclude that
lim
x→0

k(x) does not exist.

Observe further that
lim
x→∞

k(x) = 0 and lim
x→−∞

k(x) = 0.

We de�ne a horizontal asymptote in the above manner.

De�nition of Horizontal Asymptote

Let f be a function and y = k be a horizontal line, where k is some real number. We say
y = k is a horizontal asymptote for f , if lim

x→∞
f(x) = k or lim

x→−∞
f(x) = k.

Example 1.5. Consider the rational function l(x) = 1
x2

whose graph is shown in Figure
1.0.5.

4Enter k(x) as k(x) = 1/x .
5As Steven Wright said �Black holes are where God divided by zero."
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Figure 1.0.5. The hyperbola l(x) = 1
x2

Observe that
lim
x→0−

l(x) =∞ and lim
x→0+

l(x) =∞.

In this example, since the left and right limits exist and are the same,

lim
x→0

l(x) =∞

Note that we are abusing notation slightly when we say the limit is equal to∞ since in�nity
is not a number. Some textbooks prefer to use words saying �the limit tends to in�nity.�
Other textbooks prefer to be brief and (mis)use the ∞ notation. We will adopt the latter
convention.

We are now ready to formulate a working de�nition of limits.

De�nition of Limit

Let f(x) be a real-valued function de�ned on an open interval containing point a, except
possibly at a, and let L be a real number.

(1) If f(x) tends to L as x tends to a from the left, then the left limit exists and we
write lim

x→a−
f(x) = L

(2) If f(x) tends to L as x tends to a from the right, then the right limit exists and
we write lim

x→a+
f(x) = L

(3) If the left and right limit both exists and are equal, then the limit exists and we
write lim

x→a
f(x) = L

(4) If f(x) tends to L as x tends to ∞, then lim
x→∞

f(x) = L

This de�nition is what we call an informal de�nition. It will do for now, but soon we
will see why it is inadequate. Let us see some more examples.
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Example 1.6. Find the following limits:

(1) lim
x→2

5

(2) lim
x→2

3x+ 7

(3) lim
x→−∞

2x

(4) lim
x→0

ln(x)

(5) lim
x→π

2

tanx

(6) lim
x→0

cotx

(7) lim
x→0

cscx

(8) lim
x→∞

tan−1 x

Solution.

(1) The graph of y = 5 is a horizontal straight line (see Figure 1.0.6). No matter what
value x takes, whether it is 2 or something else, y is always 5. So lim

x→2
5 = 5

Figure 1.0.6. The horizontal line y = 5

(2) The graph of y = 3x + 7 is the straight line shown in Figure 1.0.7. Observe that
lim
x→2

3x+ 7 = 3(2) + 7 = 13.

(3) The graph of y = 2x is shown in Figure 1.0.8. Observe that the x-axis is the
horizontal asymptote. So lim

x→−∞
2x = 0.

(4) The graph of y = ln x is shown in Figure 1.0.9. Observe that the y-axis is the
vertical asymptote. So lim

x→0
lnx = −∞.

(5) The graph of y = tanx is shown in Figure 1.0.10. It has a vertical asymptote at
x = π

2
. Observe that lim

x→π
2
−

tanx = −∞ and lim
x→π

2
+

tanx = ∞. So lim
x→π

2

tan−1 x does

not exist.
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Figure 1.0.7. The line y = 3x+ 5

Figure 1.0.8. y = 2x

Figure 1.0.9. y = lnx

Figure 1.0.10. y = tanx

(6) The graph of y = cotx is shown in Figure 1.0.11. It has a vertical asymptote at
x = 0. Observe that lim

x→0
cotx does not exist

(7) The graph of y = cscx is shown in Figure 1.0.12. It has a vertical asymptote at
x = 0. Observe that lim

x→0
cscx does not exist.
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Figure 1.0.11. y = cotx

Figure 1.0.12. y = cscx

(8) The graph of y = tan−1 x is shown in Figure 1.0.13. It has a horizontal asymptote
at y = π

2
. Observe that lim

x→∞
tan−1 x = π

2
. �

Figure 1.0.13. y = tan−1 x

Note that in the last example just looking at the graph of f(x) = tan−1 x with no
understanding of the inverse tangent function (also called arctan) will not lead to the answer.
The function f(x) = tan−1 x is not one-to-one (see Figure 1.0.10). But if we restrict it to the
interval (−π

2
, π
2
), then the restriced tangent function is one-to-one. It has domain (−π

2
, π
2
),

range (−∞,∞), and vertical asymptotes x = ±π
2
. The inverse of this restricted tangent

function is obtained by re�ecting it along the line y = x. It is precisely the function shown
in Figure 1.0.13 with domain (−∞,∞), range (−π

2
, π
2
), and horizontal asymptotes y = ±π

2
.

By de�nition of horizontal asymptote lim
x→∞

tan−1 x = π
2
. This is not a formal proof of the

limit, but a better explanation than guessing from the graph. 6

6Limits are infused into the popular cultural making appearances on TV shows and �lms. There is a
scene in Big Bang Theory, Episode 213 �The Friendship Algorithm," that refers to lim

x→∞
tan−1 x = π

2 .

Wolowitz: Gee, why can't Sheldon get a friend?"



1. WHAT IS A LIMIT? 9

x y = sinx
x

±0.1 0.998334166
±0.01 0.99998333
±0.001 0.999998333
±0.0001 0.9999995
±0.00001 1.0
±0.000001 1.0

Table 1. The behavior of f(x) = sinx
x

near x = 0

So far we adopted a highly visual approach to limits. But drawing graphs is not always
possible.

Example 1.7. Consider the function f(x) = sinx
x

whose graph is shown in Figure 1.0.14
(but don't look now).

This is not a function with a well-known shape like the previous functions. How should
we �nd lim

x→0

sinx
x
? One approach is to take values of x closer and closer to 1 and �nd the

corresponding values of sinx
x
. This is the computational approach and it is illustrated in

Table 1. Observe that as x tends to 0, sinx
x

tends to 1. The computational approach suggests

that
lim
x→0

sinx

x
= 1.

But, how do we know something strange doesn't happen very close to 0. There is clearly
something stronger than computation needed to say conclusively that the limit is 1.

As mentioned earlier, the graph of f(x) = sinx
x

is shown in Figure 1.0.14. The graph
supports our computational intuition that the limit is 1. Are we correct? The answer is yes
in this case, and it is quite clear from the graph. However, we are left with a vague sense
that more is needed.

The previous example may suggest that using graphing software will always help in
�nding limits. Unfortunately, this is not the case.

Example 1.8. Consider the function f(x) = sin π
x
whose graph is shown in Figure 1.0.15.

Judging by this graph, we might hesitantly venture a guess that lim
x→0

sin π
x
is 0. Table 2 shows

that our guess is bolstered by computational evidence. If we tried to zoom in to get a clearer
picture of the function's behavior near zero we would get Figure 1.0.16, which is no more
helpful. So are we correct? The answer is no.

lim
x→0

sin
π

x
does not exist.

Sheldon: What part of an inverse tangent approaching an asymptote don't you under-
stand?
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Figure 1.0.14. f(x) = sinx
x

Figure 1.0.15. f(x) = sin π
x

Figure 1.0.16. A zoomed in view of f(x) = sin π
x
near 0

This is because no matter how close x gets to 0 the function f(x) oscillates wildly from -1 to
1. This is not based on visual intuition nor computational intuition. A stronger de�nition
is needed and that is the formal de�nition of the limit.
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x y = sin π
x

1 0
1
2

0
1
3

0
1
4

0
1
5

0
1
6

0

Table 2. The behavior of f(x) = sin π
x
near x = 0

Formal De�nition of Limit

Let f(x) be a real-valued function de�ned on an open interval containing a point a, except
possibly at a, and let L be a real number. The statement

lim
x→a

f(x) = L

means that for every ε > 0, there exists δ > 0, such that

if 0 < |x− a| < δ then |f(x)− L| < ε.

Figure 1.0.17 7 explains the de�nition. For every small number ε such that the distance of
f(x) to L is less than ε, there is a small number δ such that the distance between x and a is
less than δ. Note that |x− a| < δ means x is in the interval (a− δ, a+ δ) and |f(x)−L| < ε
means f(x) is in the interval (L− ε, L+ ε). As the interval around L on the y-axis shrinks,
the interval around a on the x-axis shrinks. The box in the center of the �gure also shrinks
and captures the limit inside it.

The formal de�nition of limits is mostly outside the scope of this course, but it helps to
have some understanding of it (you will begin an Advanced Calculus with this de�nition).
As usual the way to understand something is to work out some examples. The examples
here are �proofs" and we postpone it till Chapter 12. At this junction it is enough to realize
that something stronger than the visual and computation approach to limits is needed.

7 This �gure is taken from https://www.math.ucdavis.edu/ kouba/CalcOneDIRECTORY, which also
has several examples of how the formal de�nition of limits is used to �nd limits and prove that the limit
does not exist.
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Figure 1.0.17. The ε− δ de�nition of limits

We end this chapter by looking at another famous example of limits in the media. This
limit appears in the 2004 movie �Mean Girls� directed by Tina Fey. 8 Find

lim
x→0

ln(1− x)− sinx

1− cos2 x
.

There is a rigorous way of �nding this limit, which we will see later, but assume for the
moment that we only have the visual technique. How could we �gure out the limit? The
graph of this function isn't one that anyone remembers, so graphing isn't an option. It would
make sense to quickly plug 0 in the function to see what happens. But we get 0

0
which is not

helpful (at this stage). However, a quick simplication of the function (can be done mentally)
gives us

8 The story line in brief: Cady Heron lived in Africa and is homeschooled until she comes to the United
States and goes to North Shore High School. She is a nice girl who befriends the popular mean girls, and
subsequently becomes meaner than the meanest girl. Since she is good at math she gets invited to join the
Mathletes team; albeit in a disturbing way that reveals social norms in typical tina Fey fashion.

Student: I'm Kevin Gnapoor, Captain of the North Shore Mathletes. We participate in
math challenges against other high schools in the state, and we can get twice as much
funding if we've got a girl. So you should think about joining.

At the end of the movie, the Matheletes participate in the state competition. The teams are asked to �nd
the above limit. The opposing team rings the bell �rst, but answers incorrectly. Cady answers the ques-
tion correctly making the NorthShore Mathletes the state champions. As she does it she also realizes the
foolishness of her mean ways. The MovieMath website has useful information on math in the movies.
See http://www.qedcat.com/moviemath/mean(underscore)girls.html. The clip may be watched on
YouTube http://kasmana.people.cofc.edu/MATHFICT/mfview.php?callnumber=mf450.
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lim
x→0

ln (1− x)− sinx

1− cos2 x
= lim

x→0

ln (1− x)− sinx

sin2 x

= lim
x→0

ln (1− x)

sin2 x
− sinx

sin2 x

= lim
x→0

ln (1− x)

sin2 x
− 1

sinx

= lim
x→0

ln (1− x)

sin2 x
− cscx

We should know the graph of y = csc x from memory (see Figure 1.0.13) and by looking at
the graph we can conclude

lim
x→0

cscx does not exist.

Therefore it is reasonable (if not precisely accurate) to conclude that

lim
x→0

ln (1− x)− sinx

1− cos2 x
does not exist.

It is easy to see from the graph that the limit does not exist. See Figure 1.0.18. 9

Figure 1.0.18. The limit problem in the competition

Practice Problems

(1) Draw the graph of the function using your �by-hands� graphing techniques and �nd
the following limits. If the limit does not exist, explain why using your graph.

9Enter this function as Plot [(ln(1-x)-sinx)/(1-cos(caretsymbol)2(x))] . This function has its

real and imaginary parts closely intertwined; hence the blue and red curves.
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a) limx→2 3x+ 1

b) limx→10
1
x

c) limx→∞
1
x

d) limx→−∞
1
x

e) limx→0
1
x

f) limx→0
1
x3

g) limx→2
1

x−2

h) limx→∞
1

x−2

i) limx→0
1
x

+ 5

j) limx→∞
1
x

+ 5

k) limx→∞
1
x
− 7

l) limx→0 sinx

m) limx→0 cosx

n) limx→π
2

tanx

o) limx→2
|x|
x

p) limx→0
|x|
x

q) limx→0+
√
x

r) limx→0+ log2 x

(2) Draw the graphs using software and �nd the following limits. If the limit does not
exist, explain why using your graph.

a) limx→0
sinx
x

b) limx→0
cosx
x

c) limx→0 sin 1
x

(3) The following functions are piece-wise functions. Draw the graphs using �by-hands�
graphing techniques and �nd the following limits.

a) limx→0− f(x) and limx→0+ f(x) where:

f(x) =

{
0 x < 0

1 x ≥ 0

b) limx→1 f(x) where:

f(x) =


3− x x < 1

4 x = 1

x2 + 1 x > 1
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c) limx→n f(x), where n is an integer and

f(x) =

{
x x = n

0 x 6= n

d) limx→n− f(x) and limx→n+ f(x), where n is an integer and f(x) = [x].

e) limx→n− f(x) and limx→n+ f(x), where n is an integer such that n ≤ x ≤ n + 1
and f(x) = (−1)n.



CHAPTER 2

Continuous Functions

The continuous function is the only workable and usable function. It alone
is subject to law and the laws of calculation. It is a loyal subject of the
mathematical kingdom. Other so-called or miscalled functions are freaks,
anarchists, disturbers of the peace, malformed curiosities which one and all
are of no use to anyone, least of all to the loyal and burden-bearing sub-
jects who by keeping the laws maintain the kingdom and make its advance
possible. - E. D. Roe, Jr. (A generalized de�nition of limit, Math. Teacher
3(1910) p.47)

In this chapter we will introduce the concept of continuous functions - the nice and well-
behaved functions. Returning to the �ve intial examples in Chapter 1, in the �rst example,
the left and right limits exist and are both equal to 0 so

lim
x→2

f(x) = 0 = f(2).

Note that zero is precisely the value of f(2). In the second example, again the left and right
limits exist and are equal to 6, but g(2) = 8. Here the limit is not equal to the function
value at 2. So

lim
x→2

g(x) = 6 6= g(2).

In the third and fourth example, the left and right limits are di�erent, so lim
x→0

h(x) and

lim
x→0

k(x) do not exist.

The �rst function f(x) is called a continuous function. If we traced the graph of f(x)
in Figure 1.0.1 we can cover the entire curve without raising pencil from paper. This is not
the case for g(x) because it has a hole in it. The function h(x) has a step at 0 where it
jumps from −1 to 1. The pencil must be raised from paper to get from the left side of 0
to the right side. For the function k(x), as we approach 0 from the left, the function goes
to −∞, and from the right it goes to ∞. It is not a hole in the function as in the second
example, nor is it a jump as in the third example, but there is a gap at 0 and we must lift
pencil from paper. The functions g(x), h(x), and k(x) are not continuous or discontinuous
functions. We will de�ne continuity formally in terms of limits, but the intuitive de�nition
of not having to lift pencil from paper while tracing the function is very useful.

De�nition of Continuity

Let f be a real-valued function and a be a real number. We say f(x) is continuous at a
if lim

x→a
f(x) = f(a). A function that is continuous at every point in its domain is called a

continuous function.

16
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By the above de�nition, f(x) = (x − 2)2 is continuous and the piecewise functions g(x)
and h(x) are clearly discontinuous. There is a subtlety for the rational function k(x) = 1

x
.

Clearly there is a gap at 0 with one side of the function going o� to −∞ and the other side
going o� to ∞. So it is correct to say that k(x) is discontinuous over the interval (−∞,∞)
because of its behavior at 0, but it is also correct to say that k(x) is continuous on its domain
since 0 is not in its domain. This is a matter of nomenclature - making clear what is called
what. We say f(x) is left continuous at a if lim

x→a−
f(x) = f(a) and right continuous at a

if lim
x→a+

f(x) = f(a). If f(x) is de�ned only on one side of an endpoint of the domain, then

we understand continuous at the end point to mean continuous from that side.

Example 2.1. Consider the function f(x) =
√
x whose graph is shown in Figure 2.0.1.

The domain of this function is [0,∞). 1 Since it is de�ned only to the right of 0, it doesn't
make sense to talk of left continuity at 0. We conclude f(x) is a continuous function.

Figure 2.0.1. The square root function f(x) =
√
x

There are three types of discontinuity (see Figure 2.0.2).

(1) Removable discontinuity: when the function has a hole at a point t, but also has a
limit at t, as in the piecewise function from the second example

g(x) =

{
3x if x 6= 2

8 if x = 2

The function may or may not be de�ned at t.

(2) Jump discontinuity: when the function has a jump at a point t and the limit does
not exist at t, as in the piecewise function from the third example

h(x) =

{
1 if x ≥ 0

−1 if x < 0

1Enter this function in wolframalpha.com as f(x)=sqrt(x) x from 0 to 5 .
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(3) In�nite discontinuity: when the function goes to −∞ on one side and ∞ on the
other, as in the rational function from the fourth example

k(x) =
1

x

Figure 2.0.2. The three types of discontinuities

Polynomial functions and exponential function are continuous on (−∞,∞). Rational
functions, log functions, and trigonometric functions are continuous on their domains (keep-
ing in mind that the domains of rational functions and trigonometric functions are inter-
rupted by vertical asymptotes).

Example 2.2. Suppose f(x) =

{
1
x

if x ≤ 2

x3 + 1 if x > 2
. At what points is f(x) discontinuous.

Identify the type discontinuity.

Solution. The graph of f(x) is shown in Figure 2.0.3. 2 Observe that there is a jump
discontinuity at 2 and in�nite discontinuity at 0.

Figure 2.0.3. The graph of the piecewise function in 2.2

The concept of continuity leads to our �rst theorem in Calculus called the Intermediate
Value Theorem. We will understand it intuitively here and prove it in Chapter 12.

2Enter Piecewise[1/x, x<= 2, x caret symbol 3+1, x>2] x from -1 to 3
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Theorem 2.3. (Intermediate Value theorem) Suppose f is a real-valued function that
is continuous on [a, b] and suppose w is a number such that f(a) ≤ w ≤ f(b). Then, there
exists c ∈ [a, b] such that f(c) = w.

According to the theorem, when the function is continuous, we can choose any number
w between f(a) and f(b) on the y-axis and corresponding to that number w there exists a
number c between a and b on the x-axis such that f(c) = w (See Figure 2.0.4). The theorem
does not tell us how to �nd the number c, just that there exists such a number. Such results
are called Existence Theorems. At this stage it is enough to understand the proof of the
Intermediate Value Theorem intuitively. The proof is in Chapter 12.

Figure 2.0.4. Picture for Theorem 2.3

The converse is not true. For example, consider the function:

f(x) =

{
sin 1

x
x 6= 0

0 x = 0

For any interval [a, b] containing 0, f(x) takes on every value between f(a) and f(b)
somewhere in [a, b]. But f is not continuous at 0, because limx→0 f(x) does not exist.

As a corollary we obtain the following result whose proof is easy. A root of a function f
is a number c such that f(c) = 0. Roots are also called zeros of the function.

Corollary 2.4. (Bolzano's Theorem) Suppose f is a function that is continuous on [a, b]
and suppose f(a) and f(b) have opposite signs. Then there exists a root of f in [a, b].

According to the corollary, if f(a) is negative and f(b) is positive and we can draw the
function without lifting pencil from paper, then at some point the pencil will cross the x-axis
(See Figure 2.0.5). That is precisely where a root or zero of the function occurs.

The proof of the above result follows easily from the Intermediate Value Theorem. Since
f is continuous and f(a) and f(b) have opposite signs, the number 0 lies between f(a) and
f(b). By the Intermediate Value Theorem, there is a number c in [a, b] such that f(c) = 0.
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Figure 2.0.5. Picture for Corollary 2.4

This number c is a root of f . However, we will see in Chapter 12 that this result is a step in
the proof of the Intermediate Value Theorem.
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We will end this chapter with an excerpt from Bertrand Russell's essay �Mathematics
and the Metaphysicians,� 3 Historically, limits and continuity came after the discovery of
Calculus, while mathematicians were trying to make Calculus rigorous. Subsequently, they
are presented �rst for pedagogical reasons, so concepts follow in logical order. Unfortunately
this has the e�ect of discouraging students because limits is harder to grasp than derivatives
and integrals. Moreover, the presentation of limits in many textbooks is made unnecessarily
hard by dwelling on formality. Those who �nd limits challenging should �nd it reassuring to
know that limits were hard for mathematicians too.

Calculus required continuity, and continuity was supposed to require the
in�nitely little; but nobody could discover what the in�nitely little might
be. It was plainly not quite zero, because a su�ciently large number of
in�nitesimals, added together, were seen to make up a �nite whole. But
nobody could point out any fraction which was not zero, and yet not �-
nite. Thus there was a deadlock. But at last Weierstrass discovered that
the in�nitesimal was not needed at all, and that everything could be ac-
complished without it. Thus there was no longer any need to suppose that
there was such a thing. ...

The banishment of the in�nitesimal has all sorts of odd consequences, to
which one has to become gradually accustomed. For example, there is no
such thing as the next moment. The interval between one moment and
the next would have to be in�nitesimal, since, if we take two moments
with a �nite interval between them, there are always other moments in the
interval. Thus if there are to be no in�nitesimals, no two moments are
quite con- secutive, but there are always other moments between any two.
Hence there must be an in�nite number of moments between any two ;
because if there were a �nite number one would be nearest the �rst of the
two moments, and therefore next to it.

3Bertrand Russell's book of essays titled Mysticism and Logic is available online at
https://archive.org/details/mysticismlogicot00russ. This particular essay begins on page 74.



CHAPTER 3

Techniques for Finding Limits

In the previous chapter we found limits visually, but we also saw that it is not always the
easiest way nor is it always reliable. In this chapter we learn some techniques for �nding limits
beginning with the limit rules and formulas. The proofs require the formal epsilon-delta de�-
nition of limits. They are given in Chapter 12. The distinction between a forumula and a rule
is minor. A formula applies to a speci�c function and a rule applies to any real-valued func-

tion.

Theorem 3.1. (Limit Formulas) Let a and c be real numbers and n be a natural
number.

(1) lim
x→a

c = c

(2) lim
x→a

x = a

(3) lim
x→a

xn = an

(4) lim
x→a

n
√
x = n
√
a

Theorem 3.2. (Limit Rules) Let f(x) and g(x) be two real-valued functions, let a be a
real number, and let n be a natural number.

(1) lim
x→a

[f(x)± g(x)] = lim
x→a

f(x)± lim
x→a

g(x)]

(2) lim
x→a

f(x)g(x) = lim
x→a

f(x) lim
x→a

g(x)

(3) lim
x→a

f(x)
g(x)

=
lim
x→a

f(x)

lim
x→a

g(x)

(4) lim
x→a

[f(x)]n = [lim
x→a

f(x)]n

(5) lim
x→a

n
√
f(x) = n

√
lim
x→a

f(x), where if n is even, then is a positive natural number

(otherwise we get complex numbers).

For example, using these Formulas (1) and (2) and Rules (1) and (2) we can show that

lim
x→8

2x+ 5 = lim
x→8

2x+ lim
x→8

5 = lim
x→8

2 lim
x→8

x+ lim
x→8

5 = 2x+ 8

22
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But this sort of tedious applications of the rules and formulas is not how we will approach
limit problems. For this example, it makes sense to use the fact that a linear function is a
continuous function. Recall that we de�ned a continuous function as a function f(x) with
the property that lim

x→a
f(x) = f(a). So for continuous functions �nding the limit at a point a

amounts to �nding the value of the function at a (assuming a is in the domain). Functions
like polynomial functions, rational functions, radical functions, exponential functions, and
log functions are continuous on their domains. We will use this feature to obtain limits.

Example 3.3. The following functions are continuous on their domains. Use this fact to
�nd the limits.

(1) lim
x→1

x5 + 2x3 − 3x2 + 4x− 5

(2) lim
x→3

2x2+x−5
x−1

(3) lim
x→−2

3x − 5

(4) lim
x→−2

(3x − 1)2

(5) lim
x→16

√
x+ 5

(6) lim
x→−27

3
√
x+ 1

Solutions.

(1) lim
x→1

x5 + 2x3 − 3x2 + 4x− 5 = 1 + 2− 3 + 4− 5 = −1

(2) lim
x→3

2x2+x−5
x−1 = 2(32)+3−5

3−1 = 16
2

= 8

(3) lim
x→−2

3x − 5 = 3−2 − 5 = 1
9
− 5 = −44

9

(4) lim
x→−2

(3x − 1)2 = (3−2 − 1)2 = (1
9
− 1)2 = (−8

9
)2 = 64

81

(5) lim
x→16

√
x+ 5 = lim

x→16

√
16 + 5 = 4 + 5 = 9

(6) lim
x→−27

3
√
x+ 1 = lim

x→−27
3
√
−27 + 1 = −3 + 1 = −2

It isn't hard to use a visual understanding of limits for these functions, but using the notion
of continuous functions is much more elegant. This is a short list of a large number of
limit problems that can be solved simply by recognizing that the function is continuous on
its domain (and the point a is in the domain). Pay careful attention to rational functions
which are continuous only on their domains. The roots of the denominator are not in the
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domain. This is where the vertical asymptotes occur. For example, since the domain of
f(x) = 2x2+x−5

x−1 is all real numbers except 1, the function is continuous everywhere else. 1

Rational functions can have holes in them that are hidden at �rst glance as in the next
example. In fact, when �nding the limit of a rational function we should �rst check for holes
by checking if we get 0

0
. Later on, after we study derivatives we will learn a method called

L'Hopital's rule that will work in all situations that give 0
0
. But some rational functions can

be handled quite easily without a fancier technqiue.

Example 3.4. Find lim
x→1

x2−1
x−1 .

Solution. Observe that 1 is a root of the denominator. Check to see if it is also a root of
the numerator giving the 0

0
form.

x2 − 1

x− 1
=

0

0
.

Thus we must �rst factor out (x− 1) and get

lim
x→1

x2 − 1

x− 1
= lim

x→1

(x− 1)(x+ 1)

x− 1
= x+ 1 = 1 + 1 = 2.

�

Note that we can cancel (x− 1) from numerator and denominator because we are saying x
tends to 1. We are not saying x = 1. The graph of f(x) = x2−1

x−1 is the straight line y = x+ 1
with a hole at 1.

How would we tackle a limit problem involving a rational function where the denominator
is a high degree polynomial? For example, consider the function f(x) = x3−x2+x+5

x7+x4−x3+3x2−4 where
factoring the denominator to �nd the zeros would be di�cult, to say the least, and possibly
outside the scope of a Calculus course if the Rational Root Test does not work. Even if the
Rational Root Test does work it would be unbearably tedious to solve a 7th degree equation.

Example 3.5. Find lim
x→2

x3−x2+x+5
x7+x4−x3+3x2−4 .

Solution. Check to con�rm that 2 is not a root of the polynomial in the denominator
x7 + x4− x3 + 3x2− 4. Plugging x = 2 in it gives 27 + 24− 23 + 3(2)2− 4 = 192. So 2 is not
a root of the denominator, and therefore in the domain of the rational function. Now the
problem is just like the previous ones.

lim
x→2

x3 − x2 + x+ 5

x7 + x4 − x3 + 3x2 − 5
=

23 − 22 + 2 + 5

27 + 24 − 23 + 3(2)2 − 4
=

11

192

�

1The rest of this chapter may be omitted by students taking a �Survey of Calculus� course
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Let's do the same problem again taking the limit value as 1 instead of 2. So the problem
is to �nd

lim
x→1

x3 − x2 + x+ 5

x7 + x4 − x3 + 3x2 − 4
.

Observe that

x3 − x2 + x+ 5

x7 + x4 − x3 + 3x2 − 4
=

13 − 12 + 1 + 5

(1)7 + (1)4 − (1)3 + 3(1)2 − 4
=

6

0
.

So 1 is a root of the polynomial in the denominator, but not a hole since 1 is not a root of
the polynomial in the numerator. Thus, there is a vertical asymptote at 1. The function
may go to ∞ on both sides of the point 1, or it may go to −∞, or it may go to ∞ on one
side and −∞ on the other. We cannot tell with the methods we have. The best we can say
is the limit is ∞ or −∞ or does not exist.

To summarize, suppose a number a is not a hole of a rational function (checked by
verifying we don't get 0

0
), but a root of the denominator, then we can narrow the answer to

three choices:

• �does not exist" if the function approached ∞ on one side of the zero and −∞ on
the other size;

• ∞ if on either side of the root the function approached ∞.

• −∞ if on either side of the root the function approached −∞.

There is something unsatisfying about saying the answer is one of three possibilities. That
is why we look for more and more sophisticated methods. Incidently, the graph of f(x) =

x3−x2+x+5
x7+x4−x3+3x2−4 in shown in Figure 3.0.1. Observe that

lim
x→1

x3 − x2 + x+ 5

x7 + x4 − x3 + 3x2 − 4
dne

Figure 3.0.1. f(x) = x3−x2+x+5
x7+x4−x3+3x2−4

The hardest situation would occur if the rational function had high degree polynomials
in the numerator and denominator and the number a turned out to be a hole. Then we
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would have to divide the numerator and denominator by (x − a), cancel out the common
factor (x− a) and repeat all over again. Fortunately, later on we will learn L'Hopital's Rule
that can solve the problem in less than a minute.

The second technique we study is an algebraic way of handling rational functions with
radicals without graphing them. This technique is called �Rationalizing the denominator."
To implement it multiply numerator and denominator by the rational conjugate.

Example 3.6. Find lim
x→0

√
x2+9−3
x2

.

Solution.

lim
x→0

√
x2 + 9− 3

x2
= lim

x→0

√
x2 + 9− 3

x2
×
√
x2 + 9 + 3√
x2 + 9 + 3

= lim
x→0

x2 + 9− 9

x2
√

(x2 + 9) + 3

= lim
x→0

x2

x2
√

(x2 + 9) + 3

= lim
x→0

1√
(x2 + 9) + 3

=
1

6

Notice how algebraic operations can simplify the function so that plugging 0 in it does not
cause problems in the denominator. This method will not work for all radical expressions,
but when it works it works well.

The third technique is a more sophisticated method that depends on a theorem. The
proof of this theorem is given in Chapter 12.

Theorem 3.7. (Sandwich Theorem) suppose f(x) ≤ h(x) ≤ g(x), for every x in an open
interval containing a point a except possibly at a. If lim

x→a
f(x) = lim

x→a
g(x) = L, then

lim
x→a

h(x) = L.

See Figure 3.0.2 to understand this result intuitively. Since f(x) ≤ h(x) ≤ g(x), the limit
gets trapped between lim

x→a
f(x) and lim

x→a
g(x) and since both are L, it follows that lim

x→a
h(x) is

also L. Hence the name Sandwich Theorem.

Example 3.8. Find lim
x→0

x2 sin 1
x2
.
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Figure 3.0.2. The sandwich Theorem

Solution. Our strategy is to �nd two functions that sandwich x2 sin 1
x2
. We do this in a

clever manner using the fact that sinx lies between −1 and 1.

−1 ≤ sin
1

x2
≤ 1

−x2 ≤ sin
1

x2
≤ x2

lim
x→0

(−x2) ≤ x2 sin
1

x2
≤ lim

x→0
(x2)

Since lim
x→0
−x2 = 0 and lim

x→0
x2 = 0, by the Sandwich Theorem, lim

x→0
x2 sin 1

x2
= 0.

These problems can be tricky and require a lot of practice.

The fourth technique is speci�cally for �nding the limit of a rational function as x tends
to ∞ or −∞ without graphing it. Here we rely on �nding the horizontal asymptote using
the Horizontal Asymptote Theorem

Theorem 3.9. (Horizontal Asymptote Theorem) Suppose

f(x) =
anx

n + an−1x
n−1 + . . . a1x+ a0

bmxm + bm−1xm−1 + . . . b1x+ b0

is a rational function with an, bm 6= 0.

(1) If n = m, then the horizontal asymptote is y = an
bm

and lim
x→∞

f(x) = an
bm
;

(2) If n < m, then the x-axis is the horizontal asymptote and lim
x→∞

f(x) = 0; and

(3) If n > m, then there is no horizontal asymptote.

Like other techniques the Horizontal Asymptote Theorem has its limitations. It works
very well for Case (i) and (ii). It doesn't work for Case (iii) because there are slant asymptotes
and lim

x→∞
f(x) may be ∞ or −∞.
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Example 3.10. Find the limits.

(1) lim
x→∞

3x+4
5x+7

(2) lim
x→∞

2x2−5
3x2+x+5

(3) lim
x→∞

x2−1
x2+1

(4) lim
x→∞

x2+3x+1
3x4−1

Solutions.

(1) lim
x→∞

3x+4
5x+7

= 3
4

Note that, since the degree of the numerator is the same as the degree of the denom-
inator, we can give the answer instantly using the Horizontal Asymptote Theorem.

(2) lim
x→∞

2x2−5
3x2+x+5

= 2
3

(3) lim
x→∞

x2−1
x2+1

= 1

(4) lim
x→∞

x2+3x+1
3x4−1 = 0

Note that since the degree of the numerator is less than the degree of the denomi-
nator, by the Horizontal Asymptote Theorem, the x-axis, i.e. the line y = 0, is the
horizontal asymptote.

�

The ease of answering these limit problems makes the Horizontal Asymptote Theorem a
powerful technique and worth understanding thoroughly. So what exactly is going on here?
Let's take another look at the �rst example

lim
x→∞

3x+ 4

5x+ 7

Divide numerator and denominator by the highest power of x, in this case just x, to get
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lim
x→∞

3x+ 4

5x+ 7
= lim

x→∞

3x+4
x

5x+7
x

= lim
x→∞

3x
x

+ 4
x

5x
x

+ 7
x

= lim
x→∞

3 + 4
x

5 + 7
x

=
lim
x→∞

3 + lim
x→∞

4
x

lim
x→∞

5 + lim
x→∞

7
x

=
3 + 0

5 + 0

=
3

5

Consider the fourth example again

lim
x→∞

x2 + 3x+ 1

3x4 − 1

Divide numerator and denominator by the highest power of x, in this case x4, to get

lim
x→∞

x2 + 3x+ 1

x4 − 1
= lim

x→∞

x2

x4
+ 3x

x4
+ 1

x4

x4

x4
− 1

x4

= lim
x→∞

1
x2

+ 3
x3

+ 1
x4

3− 1
x4

=
lim
x→∞

1
x2

+ lim
x→∞

3
x3

+ lim
x→∞

1
x4

lim
x→∞

3− lim
x→∞

1
x4

=
0

3
= 0

These are all the steps where we carefully apply the limit rules and get the answer. We
are expected to know the graph of y = 1

x
and the fact that lim

x→∞
1
x

= 0. We will prove this

formally in Chapter 12.

Next we will give a proof of the �rst two cases of the Horizontal Asymptote Theorem.
The proofs are just like the steps in the above two problems, except that we have arbitrary
polynomials in the numerator and denominator instead of speci�c ones. The third case
requires the formal de�nition of limits and appears in Chapter 12.
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Partial Proof of the Horizontal Asymptote Theorem.

(1) Suppose n = m.

f(x) =
anx

n + an−1x
n−1 + . . . a1x+ a0

bnxn + bn−1xn−1 + . . . b1x+ b0
.

Since the highest power of x is n, divide numerator and denominator by xn to get

f(x) =
anxn

xn
+ an−1xn−1

xn
+ . . . a1x

xn
+ a0

xn

bnxn

xn
+ bn−1xn−1

xn
+ . . . b1x

xn
+ b0

xn

Since limit of a quotient is quotient of a limit and limit of a sum is sum of limits,
we can take limit of each term. As x tends to ∞ all the terms tend to 0 except
the �rst term in the numerator and the �rst term in the denominator where the xn

cancel out. So
lim
x→∞

f(x) = lim
x→∞

an
bn

=
an
bn
.

(2) Suppose n < m. Then

f(x) =
anx

n + an−1x
n−1 + . . . a1x+ a0

bmxm + bm−1xm−1 + . . . b1x+ b0
.

Since the highest power of x is m, divide numerator and denominator by xm to get

f(x) =
anxn

xm
+ an−1xn−1

xm
+ . . . a1x

xm
+ a0

xm

bmxm

xm
+ bm−1xm−1

xm
+ . . . b1x

xm
+ b0

xm

Since limit of a quotient is quotient of a limit and limit of a sum is sum of limits,
we can take limit of each term. As x tends to ∞ all the terms tend to 0 except the
�rst term in the denominator where the xm cancels out. So

lim
x→∞

f(x) = lim
x→∞

0

bm
= 0

�

The technique of dividing numerator and denominator by the highest power of x is very
useful even when the function is not a rational function.

Example 3.11. Find the limits.

(1) lim
x→∞

√
10x2+2
4x+3
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Solution. Begin by dividing by the highest power of x. Since x2 is under the radical sign
the highest power of x is x itself.

lim
x→∞

√
10x2 + 3

4x+ 3
= lim

x→∞

√
x2(10 + 2

x2
)

4x+ 3

= lim
x→∞

x
√

10+ 2
x2

x
4x+3
x

= lim
x→∞

√
10 + 2

x2

4 + 3
x

=

√
10

4

�

This brings us to the end of Chapter 3. You should think of the techniques for solving
limits as a set of tools and like any set of tools, the same technique doesn't work for all
the limit problems. With practice it becomes easier to recognize which ones work for which
problems.

Practice Problems

(1) Find the limits using the limit rules.

a) limx→
√
2 15

b) limx→−2 x

c) limx→4 3x− 4

d) limx→−2
x−5
4x+3

e) limx→1(−2x+ 5)4

f) limx→−2(3x
3 − 2x+ 7)

g) limx→4
6x−1
2x−9

h) limx→2
x2+x−2
(x−2)2

i) limx→−2
x3+8
x4−16

j) limx→2

1
x
− 1

2

x−2

k) limx→1

(
x2

x−1 −
1

x−1

)
l) limx→0

4−
√
x+16
x
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m) limx→1
x2−x−2
x5−1

n) limx→3 x
2(3x− 4)(9− x3)

o) limx→5+
√
x2 − 25 + 3

p) limx→3+

√
(x−3)2
x−3

(2) Use the Sandwich Theorem to �nd the following limits. Show your work in detail.

a) If 4x− 9 ≤ f(x) ≤ x2 − 4x+ 7 for x ≥ 0, �nd limx→4 f(x).

b) If 2x ≤ g(x) ≤ x4 − x2 + 2 for all x, �nd limx→1 g(x).

c) limx→0

√
x3 + x2 sin π

x

d) limx→0 x
4 cos 2

x

(3) Find the limit, if it exists, using a technique from this chapter.

a) limx→5−
√

5− x
b) limx→2

√
8− x3

c) limx→1
3
√
x3 − 1

d) limx→4
5

x−4

e) limx→ 5
2

8
(2x+5)3

f) limx→∞
1

x(x−3)2

g) limx→∞
−x3+2x
2x2−3

h) limx→−∞
2−x2
x+3

i) limx→−∞
4x−3√
x2−1

j) limx→∞
2x2

x2−x−2

k) limx→∞
5x2−3x+1
2x2+4x−7

l) limx→∞
3x

(x+8)2

m) limx→−∞
4−7x
2+3x

n) limx→−∞
2x2−3
4x3+5x

o) limx→∞
3

√
8+x2

x(x+1)



CHAPTER 4

What is a Derivative?

German mathematician Gottfried Wilhelm von Leibniz (1646 - 1716) and British mathemati-
cian Sir Isaac Newton (1642 - 1726) get the credit for discovering Calculus. Poet Alexander
Pope beautifully captures the greatness of this discovery as follows:

Nature and nature's laws lay hid in night:

God said, �Let Newton be!� and all was light.

Newton and Leibniz discovered Calculus independently and the ensuing �ght for credit makes
for interesting reading (see Figure 4.0.1). 1

Figure 4.0.1. The fathers of Calculus

Suppose we have to drive from Brooklyn, NY to Niagara Falls, NY. Google shows that
the distance is 412 miles and it takes 7 hours. Using the well-known formula

distance = speed× time

we may conclude that our speed is

speed =
distance

time
=

412

7
= 58.86 miles/hour.

1Images taken from Wikipedia. This portrait of a 46 year old Newton was painted in 1689 by famous
potrait artist Godfrey Kneller. Leibniz's portrait appears in the Public Library of Hannover.

33
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Does this mean we were driving exactly 58.86 miles per hour the entire way? A glance
at the odometer shows that the needle is constantly moving. So the �average speed� may
be 58.86 miles per hour over the entire 7 hour trip, but �instantaneous speed� is changing
constantly. And what exactly is an instant? Is it 1 minute, 1 second, 0.1 second, or smaller?
We represent an instant as a point on the number line. A point is an in�nitessimily small
0-dimensional entity. In other words it has no length, breadth, or height. Note that we
cannot actually draw a point that has no length, breadth, or height, no matter how �ne we
make it, so we must imagine that the dot on the page has no dimension.

There is an inherent di�culty capturing the concept of motion at an instant. Arguably at
an instant there is no motion because if we take a photo of a moving car we will get a picture
of a motionless car. Zeno of Elea (c. 490 BC - 430 BC) was grappling with these concepts
in the 3rd century BC. He was a member of the Eleatic School founded by the philosopher
Parmenides (c. 515 BC - 460 BC), who is famous for his poem on the impermeance of
change. 2

Mortals have made up their minds to name two forms, one of which they
should not name, and that is where they go astray from the truth. They
have distinguished them as opposite in form, and have assigned to them
marks distinct from one another. To the one they allot the �re of heaven,
gentle, very light, in every direction the same as itself, but not the same as
the other. The other is just the opposite to it, dark night, a compact and
heavy body. Of these I tell you the whole arrangement as it seems likely;
for so no thought of mortals will ever outstrip you.

Zeno wrote a set of three paradoxes that appear in Aristotle's Physics. We will dicuss the
�rst two later; the third is relevant at this junction.

If everything when it occupies an equal space is at rest, and if that which is
in locomotion is always occupying such a space at any moment, the �ying
arrow is therefore motionless.

In this ��ying arrow is motionless� paradox, Zeno is trying to make arguments in support of
Parmenides's doctrine that our senses cannot be trusted; change, and motion in particular,
is just an illusion. Zeno was arguing that an object �occupies� a small space at an instant,
and is therefore motionless at an instant. Aristotle rejected Zeno's reasoning in no uncertain
terms.

Zeno's reasoning, however, is fallacious, when he says that if everything
when it occupies an equal space is at rest, and if that which is in locomo-
tion is always occupying such a space at any moment, the �ying arrow is

2 Parmenides wrote a poem On Nature explaining his philosophy. The �rst part called
Proem is the introduction, the second called The Way of Truth gives his view on reality, and
the third called The Way of Opinion explains the deceptive nature of reality as it appears to
us. The complete version has not been found, but other philosophers were greatly in�uenced
by it and wrote extensively about it. It somewhat mind-bending to read, the poem is full
of interesting philosophical ideas. See http://www.mycrandall.ca/courses/grphil/parmenides.htm and
http://plato.stanford.edu/entries/parmenides/ for more information.
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therefore motionless. This is false, for time is not composed of indivisible
moments any more than any other magnitude is composed of indivisibles.

However, Zeno has the last laugh, and if Aristotle had not so resolutely rejected his attempts
to understand motion, perhaps Calculus might have been invented earlier.

The fresco in Figure 4.0.2 shows Plato and Aristotle in the center under the arch, Euclid
on the right holding a compass, Zeno on the far left, Phythagorous reading a book, and
Parmenides in an orange robe looking down at him. It was drawn in 1511 by the famous
painter Raphael in the Sistine Chapel at the Vatican, Italy 3

Figure 4.0.2. School Of Athens

There is some paradox in trying to quantify motion at an instant because when the focus
is on a single moment the motion stops. Sir Issac Newton's and independently Gottfried
Wilhelm Leibniz's brilliant approach to motion was to stop looking for a way to de�ne motion
at an instant, but instead to look at smaller and smaller intervals containing that instant.
Consider Figure 4.0.3 that gives the distance the car every hour for the 7 hour trip from
Brooklyn to Niagara Falls. The overall distance covered is 412 hours in 7 hours. As noted
earlier the average speed is 412

7
= 58.86 miles per hour. The graph on the right of the table

is a plot of time on the x-axis and distance on the y-axis.
Consider a di�erent scenario: throw an apple straight up in the air. Suppose it hits

the ground in 7 seconds. The table in Figure 4.0.4 gives the height of the apple at each
second. The graph next to it is the graph of time versus height of the orange (not to be
confused with the path the apple takes). Observe that the apple starts at 6 feet assuming

3 Image taken from Wikipedia
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Figure 4.0.3. Distance traveled by a car

the person throwing the apple up is 6 feet tall. It reaches a highest point of 50 feet after
which it falls back down reaching the ground in 7 seconds. What now is the average height
since technically at the end the apple has height 0? The speed in this scenario has direction.
When the apple is going up the speed is positive and when it is coming down the speed is
negative. Speed with direction (positive or negative) is called velocity. From now on we
will use the term velocity.

Figure 4.0.4. Height of an apple thrown up

Instead of trying to de�ne velocity at an instant of time, consider a small interval (a, b)
around an instant t and de�ne average velocity as follows:

Average velocity at t =
change in distance
change in time

=
f(b)− f(a)

b− a
...................(1)

Observe that f(b)−f(a)
b−a is the slope of the line that passes through the points (a, f(a)) and

(b, f(b)). It is called the secant line. If we let

b− a = h,

then
b = a+ h.

We can write (1) as

Average velocity at t =
f(a+ h)− f(a)

h
..................(2)

As the interval shrinks, in other words as h tends to 0, the point a+h merges with the point
a and we can write (2) as

Instantaneous velocity at a = lim
h→0

f(a+ h)− f(a)

h
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This is the derivative at a. The secant line becomes the tangent line at a.

There is nothing special about distance, time, and velocity (other than this is how it all
started). We can de�ne this concept for any function. Let f be any continuous function
de�ned on an open interval (a, b). Consider the secant line joining points (a, f(a)) and
(b, f(b)). The slope of this secant line is

slope =
f(b)− f(a)

b− a
.

Let b = a+ h and write the interval as (a, a+ h) so the slope can be written as

slope =
f(a+ h)− f(a)

h
.

As the interval shinks, that is, h tends to 0, the secant line approaches the tangent line at a
as shown in Figure 4.0.5. The slope of the secant line tends to the slope of the tangent line.
This is why the geometric interpretation of the derivative is �slope of the tangent line.� 4

Figure 4.0.5. Secant line approaching tangent line

De�nition of the Derivative

Let f be a function de�ned on an open interval containing t. The derivative of f at t,
denoted as f ′(t), is de�ned as

f ′(t) = lim
h→0

f(t+ h)− f(t)

h
.

If the limit exists at every point t in the domain of f , then f is called a di�erentiable
function. In this case the derivative itself may be viewed as a function of f and de�ned as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

The derivative is also called the rate of change at t (to re�ect the slope computation that
lies at the heart of the derivative.)

4 http://en.wikibooks.org/wiki/Calculus/Differentiation/Differentiation(underscore)Defined
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Example 4.1. Find the derivatives of the following functions.

(1) f(x) = x2

(2) f(x) = x3

(3) f(x) =
√
x

(4) f(x) = 1
x

Solutions.

(1) f(x) = x2

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)2 − x2

h

= lim
h→0

(x2 + 2xh+ h2)− x2

h

= lim
h→0

2xh+ h2

h

= lim
h→0

h(2x+ h)

h
= lim

h→0
2x+ h

= 2x

(2) f(x) = x3

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)3 − x3

h

= lim
h→0

(x3 + 3x2h+ 3xh2 + h3)− x3

h

= lim
h→0

3x2h+ 3xh2 + h3

h

= lim
h→0

h(3x2 + 3h+ h2)

h

= lim
h→0

3x2 + 3h+ h2

= 3x2
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(3) f(x) =
√
x

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

√
x+ h−

√
x

h

= lim
h→0

√
x+ h−

√
x

h
×
√
x+ h+

√
x√

x+ h+
√
x

= lim
h→0

x+ h− x
h(
√
x+ h+

√
x)

= lim
h→0

h

h(
√
x+ h+

√
x)

= lim
h→0

1√
x+ h+

√
x

=
1

2
√
x

(4) f(x) = 1
x

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1
x+h
− 1

x

h

= lim
h→0

x−(x+h)
x(x+h)

h

= lim
h→0

h
x(x+h)

h

= lim
h→0

−h
hx(x+ h)

= lim
h→0

−1

x(x+ h)

= − 1

x2

�

Suppose the function is not known and we just have some data as in Table 4 and we
know that x is the independent variable and y is the dependent variable. Then we cannot
�nd the derivative using a formula and we have to adopt a computational approach.

We can compute the slope at each consecutive pairs of points to obtain the approximate
derivative at each point. The third row in Table 2 strongly suggests that f ′(2) is in the
vicinity of 12. We cannot say for sure it is 12, but we had to make an educated guess we
would say the derivative at 2 is roughly 12.

The above function is in fact f(x) = x3 and we calculated its derivative precisely earlier
as f ′(x) = 3x2. Observe that f ′(2) = 3(22) = 12. So there is merit to this computational
approach. It is very handy for real-world data that does not �t into a neat well-known
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x y = f(x)
1.98 7.762392
1.99 7.880599

2 8
2.01 8.120601
2.02 8.242408

Table 1. Data on two related variables x and y

x y y2−y1
x2−x1

1.98 7.762392
1.99 7.880599 7.880599−7.762392

1.99−1.98 = 11.8207

2 8 8−7.880599
2−1.99 = 11.9401

2.01 8.120601 8.120601−8
2.01−2 = 12.0601

2.02 8.242408 8.242408−8.120601
2.02−2.01 = 12.1807

Table 2. Rate of change of y

functions. For example, house prices or the Standard and Poor 500 index cannot be modeled
by any function. But we can certainly calculate the derivative or rate of change just based
on the data. The next example further illustrates the computational approach.

Example 4.2. Find the rate of change of Ph.ds awarded in science and engineering from
the data shown in Figure 4.0.6. Interpret your results. Repeat the exercise for non-science
and engineering Ph.ds. 5

Figure 4.0.6. Doctorates awarded: 1998 - 2008

Solution. Observe from Figure 4.0.6 that when the rate of change is negative the graph is

decreasing on the interval and when the rate of change is positive the graph is increasing.
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Year Science and engineering y2−y1
x2−x1

1998 27274
1999 25931 -1343
2000 25966 35
2001 25529 - 437
2002 24608 -921
2003 25282 674
2004 26274 992
2005 27986 1712
2006 29863 1877
2007 31800 1937
2008 32827 1027

Table 3. Rate of change of doctorates awarded

From 2003 to 2007 the rate of change was increasing, but in 2008 the rate of change decreased
(even though the number of doctorates awarded is 1027 more than those awarded in 2007).
�

Next, we will look at an example where the derivative does not exist. But �rst let's layer
in two more terms: the left derivative and the right derivative. We de�ne them in a manner
similar to left and right limits.

De�nition of Left and Right Derivative

The left derivative of f at t, denoted as f ′−(t) is de�ned as

f ′−(t) = lim
h→0−

f(t+ h)− f(t)

h
.

The right derivative of f at t, denoted as f ′+(t) is de�ned as

f ′+(t) = lim
h→0+

f(t+ h)− f(t)

h
.

If the left and right derivative both exist and are equal then the derivative exists and is equal
to the left (and right) derivative.

Calculating left and right derivatives and showing they are unequal is a way of showing
the derivative does not exist.

Example 4.3. Show that the derivative of f(x) = |x| does not exist at 0.
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Solution.

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

|h| − 0

h

= lim
h→0

|h|
h

The function y = |x|
x
is the same as the step function

y =

{
−1 if x < 0

1 if x > 0

Revisiting its graph shown in Figure 1.0.3 we see that

lim
x→0

|x|
x

dne

since the left and right limits are not the same. Therefore, f ′(0) does not exist. �

Informally, we can recognize points where the derivative does not exist by looking at the
graph of f(x) = |x| itself. See the left graph in Figure 4.0.7. Let us try zooming in near 0
(graph on the right in Figure 4.0.7). Observe that the zoomed in graph on the right looks
exactly the same as the original graph on the left. In fact, the only indication that these
are not the exact same �gures appears on the x-axis. No matter how much we zoom in the
sharp point at 0 will be present in f(x) = |x|.

Figure 4.0.7. f(x) = |x|

Constrast this with the function f(x) = x2 where as you zoom in closer and closer around
0 the curve will look like more and more like a straight line. In fact, this goes to the heart
of the derivative notion as slope of the tangent line at a point. In a �smooth� curve like any
polynomial function, if you zoom in at a point it will look a straight line. But for a function
like f(x) = |x| with a sharp point at 0, there is an abrupt change occuring. The function is
not smooth. 6 The next example is another example of a function where the derivative does
not exist and in this case the reason is quite di�erent.

Example 4.4. Show that the derivative of f(x) = x
1
3 does not exist at 0.

6Smooth is a technical term that means the derivatives of all orders exist. We will discuss it later.
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Solution.

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

h
1
3 − 0

h

= lim
h→0

h
1
3

h

= lim
h→0

h
−2
3

From the graph of y = x
−2
3 shown in Figure 4.0.8, we see that lim

h→0
h
−2
3 =∞. Therefore f ′(0)

does not exist. �

Figure 4.0.8. y = x
−2
3

As in the case of the previous example, we can determine this just by looking at the graph
of f(x) = x

1
3 shown in Figure 4.0.9. Observe that the tangent line at 0 becomes vertical.

The slope of a vertical line does not exist. 7 Corner points, vertical tangent lines, and a few
more visual cues like a �cusp� shown in Figure 4.0.10 indicate the derivative does not exist.

Figure 4.0.9. f(x) = x
1
3

In the next theorem we prove that a di�erential function is continuous. Although most
of our proofs have been relegated to Chapter 12, every once in a way there is a proof that is
both simple and important and worth seeing right away.

7 Study note: Our approach to limits is informal in the sense that we are not using the δ − ε de�nition.
We end up drawing a �gure to compute limits as in Figure 4.0.8. So we may as well recognize directly from
the graph of the function itself (Figure 4.0.9) when a derivative does not exist. The graph gives a lot of
information provided we read it correctly. This visual approach is important for conceptual reasons as we
go along, not just for solving one or two problems.
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Figure 4.0.10. f(x) =
3
√
x2

Theorem 4.5. If a function f is di�erentiable at a, then f is continuous at a.

Proof. To prove that f is continuous at a, we must show that lim
x→a

f(x) = f(a). Observe

that we can write f(x) algebraically as

f(x) =
f(x)− f(a)

x− a
(x− a) + f(a)

To see this simplify the right side of the above expression and we get precisely f(x). So

lim
x→a

f(x) = lim
x→a

f(x)− f(a)

x− a
(x− a) + f(a)

= lim
x→a

f(x)− f(a)

x− a
lim
x→a

(x− a) + lim
x→a

f(a)

= f ′(a)(a− a) + f(a)

= f(a)

�

The converse of Theorem 4.5 is not true. We already saw that f(x) = |x| is a function
that is continuous everywhere, but not di�erentiable at 0. The general thinking among
mathematicians of the 18th century was that a continuous function would have just a few
non-di�erentiable points. Then German mathematician Karl Weierstrass (1815 - 1897) found
a function that was continuous everywhere and di�erentiable nowhere. The function is given
in the format of a power series (which we will study later). It is given by

f(x) =
∞∑
k=1

ak cos bkπx

where 0 < a < 1 and b is any odd interger such that ab > 3π
2

+ 1. A speci�c example of such
a function where a = 1

2
, b = 3 and n = 3 is given below and its graph is shown in Figure

4.0.11. 8 The graph on the left of Figure 4.0.11 is a zoomed in version of the graph on the

8Enter this function as f(x) = cos(3*x*pi)/2 + cos(9*x*pi)/4 + cos(27*x*pi)/8.
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right.

f(x) =
1

2
cos 3πx+

1

4
cos 9πx+

1

8
cos 27πx

Figure 4.0.11. f(x) = 1
2

cos 3πx+ 1
4

cos 9πx+ 1
8

cos 27πx

Such anomalous functions troubled the mathematical literati of the 18th and 19th cen-
turies. French mathematician Henri Poincaré (1854 - 1912) called these functions monsters
and declared Weierstrass's work �an outrage against common sense� and Charles Hermite
(1822 - 1901) said (jokingly we presume),

I turn with terror and horror from this lamentable scourge of functions with
no derivatives.

If we don't stop n at 3 as in the previous example, and instead let it get larger and larger
tending toward in�nity, Weietstrass' Monster has the fractal appearance shown in Figure
4.0.12. 9 Anywhere you zoom in the function looks the same. Weietstrass's work laid the
foundations of the modern theory of limits. Notice how much later this is compared to
Newton and Leibniz's original discovery.

Practice Problems

(1) Use the formal de�nition of the derivative to �nd f ′(x).

a) f(x) = 3x2

b) f(x) = x4

c) f(x) = 6

9Image taken from http://commons.wikimedia.org/wiki/File:WeierstrassFunction.svg.

An animated gif showing the fractal nature of the Monster may be found at

http://www.math.washington.edu/ conroy/general/weierstrass/weier01.gif.
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Figure 4.0.12. Weietstrass' Monster

d) f(x) = c, where c is a constant

e) f(x) = x

f) f(x) =
√
x+ 2

g) f(x) = 1
x

h) f(x) = 1
x2

i) f(x) = x
x+1

j) f(x) = 1
3x−1

k) f(x) = 1
2x+1

l) f(x) = 4
2−3x

m) f(x) =
√

3− 6x

(2) Determine where the function is not di�erentiable. Explain your answer by drawing
a graph and writing a sentence or two.

a) f(x) = |x|
b) f(x) =

√
x

c) f(x) = 3
√
x

d) f(x) = |x− 2|+ 3

e) f(x) =
√
x+ 5

f) f(x) =
√

4− x2



CHAPTER 5

Derivative Rules and Formulas

Before we embark on two chapters �lled with techniques for �nding the derivative let
us hear the story of the infamous rivalry between Newton and Leibniz and the reaction of
people to mathematics and science. The backdrop to the development of Calculus is 17th
and 18th century Europe. Mathematicians and scientists were viewed with suspicion. Poet
and painter William Blake (1785 - 1895), a deeply religious man opposed to science, painted a
picture of Newton (see Figure 5.0.1) holding a compass - an instrument perceived as clipping
the wings of imagination. The page on which Newton is drawing �ows out of his head. 1

Figure 5.0.1. William Blake's 1795 painting of Newton

Blake was a leading �gure in the Romantic era that arose in opposition to the Age of
Enlightenment that represented reason. Blake believed

Art is the tree of life.

Science is the tree of death

Perhaps the artisitic and creative aspect of mathematics was not fully understood back then.
Poet John Keats wrote

Philosophy will clip an Angel's wings

Conquer all mysteries by rule and line,

Empty the haunted air, and gnomed mine -

Unweave a rainbow ...

1https://blogs.stsci.edu/livio/2014/10/22/on-william-blakes-newton/

47
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and in�uenced Edger Allen Poe to write his famous sonnet �To Science,� 2

Science! true daughter of Old Time thou art!

Who alterest all things with thy peering eyes.

Why preyest thou thus upon the poet's heart,

Vulture, whose wings are dull realities?

One cannot say this era has completely dissapeared. An article in the Guardian titled �What
makes some people so suspicious of the �ndings of science?� provides a straightforward
answer. 3

The scienti�c method leads us to truths that are less than self-evident,
often mind-blowing and sometimes hard to swallow. In the early 17th
century, when Galileo claimed that the Earth spins on its axis and orbits
the sun, he wasn't just rejecting church doctrine. He was asking people
to believe something that de�ed common sense - because it sure looks like
the sun's going around the Earth, and you can't feel the Earth spinning.
Galileo was put on trial and forced to recant. Two centuries later, Charles
Darwin escaped that fate. But his idea that all life on Earth evolved from a
primordial ancestor and that we humans are distant cousins of apes, whales
and even deep-sea molluscs is still a big ask for a lot of people.

In his lifetime, Newton got into a bitter rivalry with Leibniz that lasted till his death. This
was somewhat unusual because Newton was also quite humble judging by his most famous
quote, �If I have seen further than others, it is by standing upon the shoulders of giants.�
He died feeling robbed of his greatest achievement. In this he appears to have been aided
by well-meaning but trouble-making friends.

In 1695 Newton received a letter from his Oxford mathematician friend John
Wallis, containing news that cast a cloud over the rest of his life. Writing about
Newton's early mathematical discoveries, Wallis warned him that in Holland
�your notions� are known as �Leibniz's Calculus Di�erentialis,� and he urged
Newton to take steps to protect his reputation. At that time the relations between
Newton and Leibniz were still cordial and mutually respectful. However, Wallis's
letters soon curdled the atmosphere, and initiated the most prolonged, bitter,
and damaging of all scienti�c quarrels: the famous (or infamous) Newton-Leibniz
priority controversy over the invention of calculus.

It is now well established that each man developed his own form of calculus
independently of the other, that Newton was �rst by 8 or 10 years but did not
publish his ideas, and that Leibniz's papes of 1684 and 1686 were the earliest
publications on the subject. However, what are now perceived as simple facts
were not nearly so clear at the time. There were ominous minor rumblings for
years after Wallis' letters, as the storm gathered.

2These selections should in no way diminish the greatness of these poets in non-scienti�c matters.
3�http://www.theguardian.com/science/2015/feb/27/science-facts-findings-method-scepticism.
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What began as mindless innuendoes rapidly escalated into blunt charges
of plagiarism on both sides. Egged on by followers anxious to win a
reputation under his auspices, Newton allowed himself to be drawn into
the centre of the fray and once his temper was aroused by accusations
of dishonesty, his anger was beyond constraint. Leibniz's conduct of
the controversy was not pleasant, and yet it paled beside that of New-
ton. Although he never appeared in public, Newton wrote most of the
pieces that appeared in his defense, publishing them under the names
of his yound men, who never demurred. As president of Royal Soci-
ety, he appointed an �impartial" committee to investigate the issue,
secretly wrote the report o�cially published by the society [in 1712],
and reviewed it anonymously in the Philosophical Transactions. Even
Leibniz's death could not allay Newton's wrath, and he continued to
pursue the enemy beyond the grave. The battle with Leibniz, the ir-
repressible need to e�ace the charge of dishonesty, dominated the �nal
25 years of Newton's life. Almost any paper on any subject from those
years is apt to be interrupted by a furious paragraph against the Ger-
man philosopher as he honed the instruments of his fury ever more
keenly (Richard S. Westfall, in Encyclopaedia Britannica).

All this was bad enough, but the disastrous e�ect of the controversy on British
science and mathematics was much more serious. It became a matter of patriotic
loyalty for the British to use Newton's geometrical methods and clumsy calculus
notations, and to look down their noses at the upstart work being done on the
Continent. However, Leibniz's analytical methods proved to be far more fruitful
and e�ective, and it was his followers who were the moving spirits in the richest
period of development in mathematical history. What has been called �the Great
Sulk� continued; for the British, the work of the Bernoullis, Euler, Lagrange,
Laplace, Gauss, and Riemann remained a closed book; and British mathemati-
cians sank into a coma of impotence and irrelevancy that lasted through most of
the eighteenth and nineteeth centuries.

Theorem 5.1. (The Formulas)

(1) Let f(x) = c where c is a real number, then f ′(x) = 0

(2) Let f(x) = ax+ b where a and b are real numbers, then f ′(x) = a

(3) (Power Rule) Let f(x) = xn where n is a real number, then f ′(x) = nxn−1

(4) Let f(x) = ex, then f ′(x) = ex

(5) Let f(x) = ln x, then f ′(x) = 1
x

(6) Let f(x) = bx, where b is a real number, then f ′(x) = bx ln b

(7) Let f(x) = logb x where b is a real number, then f ′(x) = 1
x ln b
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Theorem 5.2. The Rules

(1) (Sum Rule) If k(x) = f(x) + g(x), then k′(x) = f ′(x) + g′(x)

(2) (Product Rule) If k(x) = f(x)g(x), then k′(x) = f(x)g′(x) + g(x)f ′(x)

(3) (Quotient Rule) If k(x) = f(x)
g(x)

, then k′(x) = g(x)f ′(x)−f(x)g′(x)
[g(x)]2

(4) (Chain Rule) If k(x) = (f ◦ g)(x), then k′(x) = f ′(g(x))g′(x)

We will prove all of these rules and formulas except for a portion of Formula (3), Formula (4),
and Rule (4) because their proofs are slightly more complicated. We save them for Chapter
12. 4

Proofs of Formulas (1) (2) and Part of (3)

(1) Let f(x) = c. Then, by de�nition

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

c− c
h

= 0

(2) Let f(x) = ax+ b. Then, by de�nition

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

a(x+ h) + b− (ax+ b)

h

= lim
h→0

ax+ ah+ b− ax− b
h

= lim
h→0

ah

h
= a

(3) Let f(x) = xn. We will break this proof into three parts: suppose n is a natural
number; suppose n is a negative natural number; and suppose n is a real number.

The proof for each sub-part is di�erent. We will prove the �rst part and save the
other two for later. Observe that if n = 0, then we get f(x) = x0 = 1, so f ′(x) = 0.
The formula still holds since nxn−1 = 0x0−1 = 0.

Proof of Formula (3a): Suppose f(x) = xn, where n is a natural number. We will
use the Binomial Theorem. Let n be a natural number and a, b be real numbers.

(a+ b)n = an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + . . .

(
n

n− 1

)
abn−1 + bn

4 A student taking �Survey of Calculus� may omit all proofs and go straight to Examples 5.1 and 5.2.
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f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
x→0

(x+ h)n − xn

h

= lim
h→0

xn +
(
n
1

)
xn−1h+

(
n
2

)
xn−2h2 +

(
n
3

)
xn−3h3 + . . . hn − xn

h

= lim
h→0

(
n
1

)
xn−1h+

(
n
2

)
xn−2h2 +

(
n
3

)
xn−3h3 + . . . hn

h

= lim
h→0

h[
(
n
1

)
xn−1 +

(
n
2

)
xn−2h+

(
n
3

)
xn−3h2 + . . . hn−1]

h

= lim
h→0

(
n

1

)
xn−1 +

(
n

2

)
xn−2h+

(
n

3

)
xn−3h2 + . . . hn−1

=

(
n

1

)
xn−1

= nxn−1

Proof of Rules (1) (2) and (3)

(1) Let k(x) = f(x) + g(x).

k′(x) = lim
h→0

k(x+ h)− k(x)

h

= lim
h→0

f(x+ h) + g(x+ h)− [f(x) + g(x)]

h

= lim
h→0

f(x+ h)− f(x)

h
+ lim

h→0

g(x+ h)− g(x)

h
= f ′(x) + g′(x)

(2) Let k(x) = f(x)g(x).

k′(x) = lim
h→0

k(x+ h)− k(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)

h

= lim
h→0

f(x+ h)
g(x+ h)− g(x)

h
+ lim

h→0
g(x)

f(x+ h)− f(x)

h

= lim
h→0

f(x+ h) lim
h→0

g(x+ h)− g(x)

h
+ lim

h→0
g(x) lim

h→0

f(x+ h)− f(x)

h
= f(x)g′(x) + g(x)f ′(x)
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(3) Let k(x) = f(x)
g(x)

.

k′(x) = lim
h→0

k(x+ h)− k(x)

h

= lim
h→0

f(x+h)
g(x+h

− f(x)
g(x)

h

= lim
h→0

f(x+ h)g(x)− f(x)g(x+ h)

hg(x+ h)g(x)

= lim
h→0

f(x+ h)g(x)− f(x)g(x) + f(x)g(x)− f(x)g(x+ h)

hg(x+ h)g(x)

= lim
h→0

g(x)f(x+h)−f(x)
h

− f(x)g(x+h)−g(x)
h

g(x+ h)g(x)

=
lim
h→0

g(x)f(x+h)−f(x)
h

− lim
h→0

f(x)g(x+h)−g(x)
h

lim
h→0

g(x+ h)g(x)

=
g(x)f ′(x)− f(x)g′(x)

[g(x)]2

Note that in the third line of Proof (2) we add and subtract f(x+h)g(x). This clever and
perfectly legitimate algebraic trick makes the proof work. Proof (3) also has such a trick.
We add and subtract f(x)g(x) in the third line.

There is one more piece of notation to introduce and that is the dy
dx

notation. The
expression dy represents a small change in y and dx represents a small change in x. Put
together dy

dx
represents the slope of a small secant line, and as we know, when the interval

around a point shrinks, the secant line becomes the tangent line at the point. So as the
secant line tends toward the tangent line, the slope of the secant line tends toward the slope
of the tangent line. This notation is much better than the f ′(x) notation when using the
rules and is a good example of how the right kind of notation makes things easier.

Example 5.3. Find the derivatives for the following functions:

(1) y = x8 + 12x5 + 10x3 − 6x+ 5

(2) y =
√
x

(3) y = x2+2
x3−5x

(4) y = (x2 + 2x− 5)10

(5) y =
√

3x+ 1

(6) y =
√
x(2x+ 3)5
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Solutions.

(1) y = x8 + 12x5 + 10x3 − 6x+ 5

dy

dx
=

d

dx
(x8 + 12x5 + 10x3 − 6x+ 5)

=
d

dx
x8 +

d

dx
12x5 +

d

dx
10x3 − d

dx
6x+

d

dx
5 Sum Rule

=
d

dx
x8 + 12

d

dx
x5 + 10

d

dx
x3 − 6

d

dx
x+

d

dx
5 Formula 2

= 8x7 + 12(5x4) + 10(3x2)− 6 + 0 Formulas 1 and 3

= 8x7 + 60x4 + 30x2 − 6

Note: The Sum Rule and Formulas 1, 2, and 3 are used in this problem. This, being
the �rst example, we wrote all the steps. In practice, all of the steps are done in
the head. 5 We write directly

dy

dx
= 8x7 + 60x4 + 30x2 − 6

(2) y =
√
x

dy

dx
=

1

2
x−

1
2 =

1

2
√
x

Formula 1

(3) y = x2+2
x3−5x

dy

dx
=

(x3 − 5x) d
dx

(x2 + 2)− (x2 + 2) d
dx

(x3 − 5x)

(x3 − 5)2
Quotient Rule

=
(x3 − 5x)(2x)− (x2 + 2)(3x2 − 5)

(x3 − 5)2

(4) y = (x2 + 2x− 5)10

dy

dx
= 10(x2 + 2x− 5)9

d

dx
(x2 + 2x− 5) Formula 1 and Chain Rule

= 10(x2 + 2x− 5)9(2x+ 2)

5There is an art to which steps must be written and which may be omitted. Everyone agrees that
skipping too many steps leads to mistakes, but writing too much also makes things di�cult and boring.
There is no reason to show implementation of the rules separately step by step.
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(5) y =
√

3x+ 1

dy

dx
=

1

2
(3x+ 1)−

1
2
d

dx
(3x+ 1) Formula 1 and Chain Rule

=
1

2
√

3x+ 1
(3)

=
3

2
√

3x+ 1

(6) y =
√
x(2x+ 3)5

dy

dx
=
√
x
d

dx
(2x+ 3)5 + (2x+ 3)5

d

dx

√
x Product Rule

dy

dx
=
√
x[5(2x+ 3)4]

d

dx
(2x+ 3) + (2x+ 3)5

1

2
(x−

1
2 ) Formula 3 and Chain Rule

=
√
x[5(2x+ 3)4]2 + (2x+ 3)5

1

2
√
x

= 10
√
x(2x+ 3)4 +

(2x+ 3)5

2
√
x

�

With the Quotient Rule we can easily prove the second part of Formula (3), when n is a
negative integer.

Proof of Formula (3b) Suppose f(x) = x−n, where n is a natural number. Then f(x) = 1
xn
.

So we can apply the Quotient Rule.

f ′(x) =
xn d

dx
(1)− (1) d

dx
(xn)

(xn)2

=
xn(0)− (1)nxn−1)

(xn)2

=
−nxn−1

x2n

=
−nxn−1

x2n

= −n(xn−1−2n)

= −nx−n−1

�
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Returning to the formulas, the proof that the derivative of ex is itself is more complicated
than one would expect. We give an informal proof here and postpone the formal proof until
Chapter 12. 6

Informal Proof of Rule (4)

Let f(x) = ex. Then,

f ′(x) = lim
h→0

ex+h − ex

h

= lim
h→0

exeh − ex

h

= lim
h→0

ex(eh − 1)

h

= lim
h→0

ex lim
h→0

eh − 1

h

= ex lim
h→0

eh − 1

h

Observe from Figure 5.0.2 that lim
x→0

ex−1
x

= 1. So

f ′(x) = ex

Figure 5.0.2. y = ex−1
x

The fact that the derivative of ex is ex was discovered by Jacob Bernoulli in 1683. This
is quite an amazing fact indeed! French chemical engineer and writer Francois le Lionnais
(1901 - 1984) 7 describes how awe-inspiring it is as follows:

6There is considerable value in informal proofs as it gives the proof idea. Knowing the di�erence between
a proof idea and a formal proof is an important skill that comes only after seeing many proofs. Informal
proofs are �ne as long as one is aware they are informal.

7Francois le Lionnais was a founder of the Oulipo style of writing. A group of French writers and
mathematicians got together and devised ways of writing with constraints, often mathematical constraints,
that were meant to trigger creativity. For example, writing an essay without a speci�c letter of the alphabet.
His quote appears in Great Currents of Mathematical Thought, vol. 1, Dover Publications.
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Who has not been amazed to learn that the function y = ex, like a phoenix
rising from its own ashes, is its own derivative?

Look at the graphs y = 2x and y = 3x in Figure 5.0.3. Draw the tangent line to both curves
at (0, 1) and you will �nd the slopes to be roughly 0.693 and 1.098. This means for some
value of b between 2 and 3, the curve y = bx must have slope of the tangent line at (0, 1)
exactly equal to 1. The value of b happens to be 2.71828 . . . . Later, in 1737 Leonard Euler
proved that this number is irrational and we call it e in his honor.

Figure 5.0.3. y = 2x and y = 3x

Proofs of Formulas (5), (6), (7)

(5) Let f(x) = ln x, then f ′(x) = 1
x

Proof. Since log and exponential functions are inverses of each other,

elnx = x

Taking derivatives on both sides

d

dx
elnx =

d

dx
x

Using Formula (4) and the Chain Rule

elnx
d

dx
lnx = 1

x
d

dx
lnx = 1

d

dx
lnx =

1

x

(6) Let f(x) = bx, where b is a real number, then f ′(x) = (bx) ln b

Proof.
bx = eln b

x

Using log properties
bx = ex ln b
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Taking derivatives on both sides and using Formula (4) and the Chain Rule

d

dx
bx =

d

dx
ex ln b

= ex ln b
d

dx
x ln b

= ex ln b(lnb)

= eln b
x

(lnb)

= bx(lnb)

(7) Let f(x) = logb x where b is a real number, then f ′(x) = 1
x ln b

Proof.
blogb x = x

Taking derivatives on both sides

d

dx
blogb x =

d

dx
x

Using Formula (6) and the Chain Rule

blogb x ln b(
d

dx
logb x) = 1

x ln b(
d

dx
logb x) = 1

d

dx
logb x =

1

x ln b
�

Next, we give a short alternate proof of Formula (7) using the Change of Base
formula for logs. If we know logb x then we can �nd loga x for any desired base a as
follows:

loga x =
logb x

logb a
.

Alternate Proof of Formula (7). We have to �nd the derivative of f(x) = logb x.
Using the Change of Base formula, we can change the base to e as follows:

f(x) = logb x =
lnx

ln b
= (

1

ln b
) lnx

Using Formula (5) and the fact that ln b is a constant

f ′(x) =
1

x ln b
.

�

That's it! As promised it is a short proof.
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Example 5.4. Find the derivatives of the following functions:

(1) y = xex

(2) y = x2ex

(3) y = x2bx

(4) y = (x2 + 2x+ 1) lnx

(5) y = logb x
x2+1

Solutions.

(1) y = xex

dy

dx
= x

d

dx
ex + ex

d

dx
x

= xex + ex = ex(x+ 1)

(2) y = x2ex

dy

dx
= x2

d

dx
ex + ex

d

dx
x2

= x2ex + ex(2x) = xex(x+ 2)

(3) y = x2bx

dy

dx
= x2

d

dx
bx + bx

d

dx
x2

= x2bx ln b+ bx(2x) = xbx(x ln b+ 2)

(4) y = (x2 + 2x+ 1) lnx

dy

dx
= (x2 + 2x+ 1)

d

dx
lnx+ (lnx)

d

dx
(x2 + 2x+ 1)

= (x2 + 2x+ 1)
1

x
+ (lnx)(2x+ 2)



5. DERIVATIVE RULES AND FORMULAS 59

(5) y = logb x
x2+1

=
d

dx

(x2 + 1) d
dx

logb x− (logb x) d
dx

(x2 + 1)

(x2 + 1)2

=
(x2 + 1) 1

x ln b
− (logb x)(2x)

(x2 + 1)2

�

The second derivative of a function is the derivative of the derivative. The third derivative
is the derivative taken three times, and so on. The nth derivative is denoted as d2y

dx2
. These

derivatives are called higher order derivatives.

Example 5.5. Find the second derivative of the following functions:

(1) y = x3 + 5x2 − 2x− 1

(2) y = xex

Solutions.

(1) y = x3 + 5x2 − 2x− 1
dy

dx
= 3x2 + 10x− 2

d2y

dx2
= 6x+ 10

(2) y = xex

dy

dx
= xex + ex = ex(x+ 1)

d2x

dy2
= ex

d

dx
(x+ 1) + (x+ 1)

d

dx
ex

= ex + (x+ 1)ex

= ex(x+ 2)

Former President of the American Mathematical Society Hugo Rossi noted in a column
in the AMS Notices Vol. 43 No. 10:

In the fall of 1972 President Nixon announced that the rate of increase of
in�ation was decreasing. This was the �rst time a sitting president used
the third derivative to advance his case for reelection...Was President Nixon
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telling us that the economy was getting better? Did his listeners understand
that in fact the in�ation rate was still increasing and thus the economy still
worsening?

In�ation is de�ned as a sustained increase in the general price level of goods and services
in an economy over a period of time. So if x represents goods and services and y their prices,
in�ation is the rate of change in price. In other words in�ation is the �rst derivative. The
rate of change of in�ation is the second derivative, and the rate of change of the rate of
change of in�ation is the third derivative.

Practice Problems

(1) Di�erentiate using the sum, di�erence, product and quotient rules.

a) y = x4 + 3x2 − 2

b) y = (1 + 4x)(x2 + x)

c) y = x2+1
x2−1

d) y = x2+4x+3√
x

e) y = x3

1−x2

f) y = x2+2
x4−3x2+1

(2) Di�erentiate. In addition to the above rules, the Chain Rule is needed for these
problems.

a) y = (x4 + 3x2 − 2)2

b) y = (4x− x2)100

c) y = 4
√
x3 + 2x+ 1

d) y = (x4 + 1)
2
3

e) y = 1
(x4+1)3

f) y = (1 + 4x)5(3 + x− x2)8

g) y =
(
x2+1
x2−1

)3
h) y =

√
x−1
x+1

(3) Di�erentiate.

a) y = e2x

b) y = e1−x
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c) y = ex
2−2x

d) y = e−x
2

e) y = e−
3
x2

f) y = xex

g) y = ex

x+1

h) y = (ex + e−x)3

i) y = ex−e−x
2

j) y = x2ex

k) y = x2ex − 2xex + 2ex

l) y = 32x

m) y = 21−x

n) y = 5x
2−2x

o) y = 2−x
2

p) y = 2
−3

x2

q) y = x3x

r) y = 2x

x+1

(4) Di�erentiate.

a) y = ln 2x

b) y = log10 2x

c) y = log10 x
3

d) y = ln(x2 + 5x)

e) y = log3(x
2 + 5x)

f) y = lnx
ln 2x+1

g) y = lnx
x2

h) y = 1+lnx
1−lnx

i) y = 1
lnx

(5) Find the equation of the tangent line to the curve at the indicated point.

a) y = x2 at (3, 9)

b) y = 1
x
at (1, 1)

c) y = x
5
2 at (3, 3

5
2 )
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(6) The equation of motion of a particle is given by y = 40t− 16t2 where y is in meters
and t is in seconds. Velocity is the rate of change of distance (it is speed with a
direction). Acceleration is the rate of change of velocity.

a) Find the velocity as a function of t.

b) Find the velocity when t = 2.

c) Find the acceleration as a function of t.

d) Find the acceleration when t = 2.

(7) Suppose a rock is thrown straight up in the air with an initial velocity of 40 feet per
second. Its height after t seconds is given by y = 40t− 16t2.

a) Find the velocity when t = 2.

b) At what time will the rock hit the surface?

c) With what velocity will the rock hit the surface?



CHAPTER 6

More Derivative Formulas

This chapter is essentially a continuation of the previous chapter with more formulas. We
will study the derivatives of the six trigonometric functions and the six inverse trigonometric
functions adding twelve more formulas to the previous list of six formulas and four rules. 1

British author William Somerset Maugham said

There are three rules for writing a novel.
Unfortunately, no one knows what they are.

Fortunately, we have many wonderful rules for �nding derivatives that make things quite
easy. We don't always get so lucky, not in math, not in anything else. So when there are
rules that work why not study them for their own sake and �nd pleasure in the symmetry
and beauty of the rules? From now on we will use the dy

dx
notation most of the time.

Theorem 6.1. (Derivatives of the six trigonometric functions)

(1) d
dx

sinx = cosx

(2) d
dx

cosx = − sinx

(3) d
dx

tanx = sec2 x

(4) d
dx

cotx = − csc2 x

(5) d
dx

secx = secx tanx

(6) d
dx

cscx = − cscx cotx

We will give an informal proof for (1) since it involves two limits that cannot be found by
the techniques in Chapter 3 and formal proofs for the rest. The formal proof of (1) appears
in Chapter 12. The proofs of Formulas (2) to (6) use the following trignometic identities:

• sin (π
2
− x) = cos x

• tanx = sinx
cosx

• cotx = 1
tanx

= cosx
sinx

• secx = 1
cosx

1 A student taking a course in Survey of Calculus or Business Calculus should focus on the twelve
formulas and the two examples based on them, omitting all proofs.
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• cscx = 1
sinx

.

• sin2 x+ cos2 x = 1

• sec2 x− tan2 x = 1

• csc2 x− cot2 x = 1

But before looking at the proofs let us use these formulas in examples.

Example 6.2. Find the derivatives of the following functions:

(1) y = x2 sinx

(2) y = ecosx

(3) y = esec 3x

(4) y = secx
1+tanx

Solutions.

(1) y = x2 sinx

dy

dx
= x2

dy

dx
sinx+ sinx

d

dx
x2

= (x2)(cosx) + (sin x)(2x)

(2) y = ecosx

dy

dx
= esec 3x

d

dx
sec 3x

= esec 3x(sec 3x tan 3x)
d

dx
3x

= esec 3x(sec 3x tan 3x)(3)

(3) y = esec 3x

dy

dx
= ecosx

d

dx
cosx

= ecosx(− sinx)
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(4) y = secx
1+tanx

dy

dx
=

(1 + tan x) d
dx

secx− (secx) d
dx

(1 + tanx)

(1 + tan x)2

=
(1 + tan x) secx tanx− (secx) sec2 x

(1 + tanx)2

=
(1 + tan x) secx tanx− sec3 x

(1 + tan x)2

�

Note that it may be possible to simply further using identities and get an elegant �nal
answer, but for the most part, this much simpli�cation is enough. However, if we have to
�nd the second derivative, then more simplication is needed to get an expression easier to
di�erentiate again.

Informal Proof of (1). Using the de�nition of the derivative

d

dx
sinx =

sin(x+ h)− sinx

h

= lim
h→0

sinx cosh+ cosx sinh− sinx

h

= lim
h→0

sinx cosh− sinx+ cosx sinh

h

= lim
h→0

sinx(cosh− 1) + cos x sinh

h

= lim
h→0

sinx lim
h→0

cosh− 1

h
+ lim

h→0
cosx lim

h→0

sinh

h

We saw the graph of y = sinx
x

in Figure 1.0.14. Recall that lim
x→0

sinx
x

= 1. Similarly, the graph

of y = cosx−1
x

is shown in Figure 6.0.1. Observe that lim
x→0

cosx−1
x

= 0. So

d

dx
sinx = lim

h→0
sinx lim

h→0

cosh− 1

h
+ lim

h→0
cosx lim

h→0

sinh

h
= (sinx)(0) + (cos x)(1)

= cosx.

�

Formal Proofs of (2) to (6).
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Figure 6.0.1. y = cosx−1
x

(2) d
dx

cosx = − sinx

Using the Chain Rule and trigonometric identity sin (π
2
− x) = cos x

d

dx
cosx =

d

dx
sin(

π

2
− x)

= cos(
π

2
− x)

d

dx
(
π

2
− x)

= (sinx)(−1)

= − sinx

(3) d
dx

tanx = sec2 x

Using the Quotient Rule and trognometric identities tanx = sinx
cosx

and sin2 x +
cos2 x = 1

d

dx
tanx =

d

dx

sinx

cosx

=
cosx d

dx
sinx− sinx d

dx
cosx

cos2 x

=
cosx(cosx)− sinx(− sinx)

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x

(4) d
dx

cotx = − csc2 x
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Using the Quotient Rule and trogonometric identities cotx = cosx
sinx

and sin2 x +
cos2 x = 1

d

dx
cotx =

d

dx

cosx

sinx

=
sinx d

dx
cosx− cosx d

dx
sinx

sin2 x

=
sinx(− sinx)− cosx(− cosx)

cos2 x

=
−(sin2 x+ cos2 x)

cos2 x

=
1

sin2 x
= csc2 x

(5) d
dx

secx = secx tanx

Using the Power Rule and trigonometric identity secx = 1
cosx

d

dx
secx =

d

dx

1

cosx

=
d

dx
(cosx)−1

= −(cosx)−2
d

dx
cosx

= − 1

cos2 x
(− sinx)

=
1

cosx

sinx

cosx
= secx tanx

(6) d
dx

cscx = − cscx cotx

Using the Power Rule and trigonometric identity cscx = 1
sinx

d

dx
cscx =

d

dx

1

sinx

=
d

dx
(sinx)−1

= −(sinx)−2
d

dx
sinx

= − 1

sin2 x
cosx

= − 1

sinx

cosx

sinx
= − cscx cotx
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�

Theorem 6.3. (Derivatives of the six inverse trigonometric functions)

(1) d
dx

sin−1 x = 1√
1−x2

(2) d
dx

cos−1 x = − 1√
1−x2

(3) d
dx

tan−1 x = 1
1+x2

(4) d
dx

cot−1 x = − 1
(1+x2)

(5) d
dx

sec−1 x = 1
|x|
√
x2−1

(6) d
dx

csc−1 x = − 1
|x|
√
x2−1

Example 6.4. Find the derivative:

(1) y = x tan−1 x

(2) y = x tan−1
√
x

(3) y = 1
sin−1 x

Solutions.

(1) y = x tan−1 x

dy

dx
= x

d

dx
tan−1 x+ tan−1 x

d

dx
x

= x
1

1 + x2
+ (tan−1 x)(1) =

x

1 + x2
+ tan−1 x

(2) y = x tan−1
√
x

dy

dx
= x

d

dx
tan−1

√
x+ tan−1

√
x
d

dx
x

= x
1

1 + x2
d

dx

√
x+ tan−1

√
x

=
x

1 + x2
1√
x

+ tan−1
√
x
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(3) y = 1
sin−1 x

dy

dx
=

d

dx
(sin−1 x)−1

= −(sin−1 x)−2
d

dx
sin−1 x

= −(sin−1 x)−2
1√

1− x2

�

We will give informal proofs for the derivatives of the inverse trigonometric functions.
The formal proofs are in Chapter 12. The informal proofs skip over some important details
about the domains and ranges of the inverse trigonometric functions and the appearance of
|x| in (6) and (7). The formal proofs are in Chapter 12. Arguably one must see the informal
proofs before seeing the formal proofs. So there is good reason to do these informal proofs
�rst. Also the strategy presented in the informal proof is called implicit derivative. It is
quite an important strategy and the next chapter is entirely devoted to it.

Informal Proofs

(1) d
dx

sin−1 x = 1√
1−x2

Let y = sin−1 x. Then sin y = x. Taking derivatives on both sides

cos y
dy

dx
= 1

dy

dx
=

1

cos y

Since sin y = x, we can draw a right triangle with one acute angle labeled y. The side
opposite angle y has length x and the hypotenuse has length 1. By the Pythagorean
Theorem the side adjacent to angle y has length

√
1− x2. 2

y

1
x

√
1− x2

From the triangle we see that cos y =
√
1−x2
1

. So

dy

dx
=

1√
1− x2

2 Note that drawing a right triangle may give the mistaken impression that y is the measure of an angle
in degrees, but y is in radians, which are real numbers. Limit rules apply to real numbers.
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(2) d
dx

cos−1 x = − 1√
1−x2

Let y = cos−1 x. Then cos y = x. Taking derivatives on both sides

− sin y
dy

dx
= 1

dy

dx
= − 1

sin y

Since cos y = x, we can draw a right triangle with one acute angle labeled y. The
side adjacent to angle y has length x and the hypotenuse has length 1. By the
Pythagorean Theorem the side opposite angle y has length

√
1− x2.

y

1 √
1− x2

x

From the triangle we see that cos y =
√
1−x2
1

. So

dy

dx
= − 1√

1− x2

(3) d
dx

tan−1 x = 1
1+x2

Let y = tan−1 x. Then tan y = x. Taking derivatives on both sides

sec2 y
dy

dx
= 1

dy

dx
=

1

sec2 y

Since tan y = x, we can draw a right triangle with one acute angle labeled y. The
side opposite angle y has length x and the side adjacent to angle y has length 1. By
the Pythagorean Theorem the hypotenuse has length 1 + x2.

y

1 + x2
x

1

From the triangle we see that sec y = 1+x2

1
. So

dy

dx
=

1

sec2 y
=

1

1 + x2
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(4) d
dx

cot−1 x = − 1
(1+x2)

Let y = cot−1 x. Then cot y = x. Taking derivatives on both sides

− csc2 y
dy

dx
= 1

dy

dx
= − 1

csc2 y

Since cot y = x, we can draw a right triangle with one acute angle labeled y. The
side adjacent to angle y has length x and the side opposite angle y has length 1. By
the Pythagorean Theorem the hypotenuse has length 1 + x2.

y

1 + x2
1

x

From the triangle we see that csc y = 1+x2

1
. So

dy

dx
= − 1

csc2 y
= − 1

1 + x2

(5) d
dx

sec−1 x = 1
|x|
√
x2−1

Let y = sec−1 x. Then sec y = |x|. 3 Taking derivatives on both sides

sec y tan y
dy

dx
= 1

dy

dx
=

1

sec y tan y

Since sec y = |x|, we can draw a right triangle with one acute angle labeled y. The
side adjacent to angle y has length 1 and the hypotenuse has length |x|. By the
Pythagorean Theorem the side opposite angle y has length

√
x2 − 1.

y

|x| √
x2 − 1

1

From the triangle we see that sec y = |x|
1
and tan y =

√
x2−1
1

. So

dy

dx
=

1

sec y tan y
=

1

|x|
√
x2 − 1

3To see why we have |x| here were must take a took at the formal proof in Appendix D. Without the
formal proof this must be simply believed.
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(6) d
dx

csc−1 x = − 1
|x|
√
x2−1

Let y = csc−1 x. Then csc y = |x|.
Taking derivatives on both sides

− csc y cot y
dy

dx
= 1

dy

dx
= − 1

csc y cot y

Since csc y = |x|, we can draw a right triangle with one acute angle labeled y. The
side opposite to angle y has length 1 and the hypotenuse has length |x|. By the
Pythagorean Theorem the side adjacent to angle y has length

√
x2 − 1.

y

|x|
1

√
x2 − 1

From the triangle we see that csc y = |x|
1
and cot y =

√
x2−1
1

. So

dy

dx
= − 1

csc y cot y
= − 1

|x|
√
x2 − 1

�

Practice Problems

(1) Find the derivative:

a) y = cosx

b) y = tanx

c) y = cscx

d) y = secx

e) y = cotx

f) y = sin−1 x

g) y = cos−1 x

h) y = tan−1 x

(2) Find the derivative:
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a) y = 3x3 − 2 cosx

b) y = x2 sinx

c) y = sinx+ 1
2

cotx

d) y = 2 csc x+ 5 cosx

e) y = x3 cosx

f) y = 4 sec x+ tanx

g) y = cscx+ ex cotx

h) y = ex(cosx+ x)

i) y = x
tanx+2

j) y = 1+sinx
x+cosx

k) y = secx
1+tanx

l) y = 1−secx
1+tanx

m) y = sinx
x2

n) y = cscx(x+ cotx)

o) y = xex cscx

p) y = x2 sinx tanx

(3) Find the derivative:

a) y = sin 4x

b) y = tan(sinx)

c) y = sin ex

d) y = cosx3

e) y = cos3 x

f) y =
√

tanx+ 1

g) y = esinx

h) y = esin 3x

i) y = esec 3x

j) y = sin(tan 2x)

k) y = tan2(3x)

l) y = sec2 x tan2 x

m) y = x sin 1
x

n) y = e5x cos 3x

o) y = sin(cos(tanx))
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(4) Find the derivative:

a) y = 1
sin−1 x

b) y = tan−1
√
x

c) y = x tan−1
√
x

d) y = sin−1(2x+ 1)

e) y =
√

tan−1 x

f) y = x
√
tan−1x

g) y = tan−1
√

1−x
1+x

h) y = cos−1 e2x



CHAPTER 7

Implicit Di�erentiation

An explicit function of x is written as y = f(x). For example,

y = 2x+ 3

is an explicity function. But if we write it as

2x+ y = 3

then we are writing it as an implicit function of x. For a simple function like this we can
write it explicitly or implicitly, but it may be harder to write other functions explicitly. For
example,

y4 + 3y − 4x3 = 5x+ 1

cannot be written by isolating y on one side and x on the other. This is an example of an
implicit function that cannot be written explicitly. Another example is

x4 + y2 = 5.

The basic strategy is to take derivative with respect to x on both sides and when y is
encountered to di�erentiate as usual, but include dy

dx
. It is easier done than said. We already

saw examples of how to use this technique in the previous chapter. In this chapter we will
consider more such problems.

Example 7.1. Find the derivatives.

(1) x3 + y2 = 3x+ 5

(2) 4xy3 − x2y + x3 − 5x+ 6 = 0

(3) y = x2 sin y

Solutions.

75
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(1) x3 + y2 = 3x+ 5

d

dx
(x3 + y2) =

d

dx
(3x+ 5)

d

dx
x3 +

d

dx
y2 =

d

dx
3x+

d

dx
5

3x2 + 2y
dy

dx
= 3 + 0

2y
dy

dx
= −3x2 + 3

dy

dx
=
−3x2 + 3

2y

(2) 4xy3 − x2y + x3 − 5x+ 6 = 0

d

dx
(4xy3 − x2y + x3 − 5x+ 6) =

d

dx
0

d

dx
4xy3 − d

dx
x2y +

d

dx
x3 − d

dx
5x+

d

dx
6 =

d

dx
0

4x
d

dx
y3 + y3

d

dx
(4x)− [x2

dy

dx
− y d

dx
x2] + 3x2 + 5 = 0

4x(3y3)
dy

dx
+ y3(4)− [x2

dy

dx
− y(2x)] + 3x2 + 5 = 0

12xy3
dy

dx
+ 4y3 − x2 dy

dx
+ 2xy + 3x2 + 5 = 0

dy

dx
[12xy3 − x2] = −4y3 − 2xy − 3x2 − 5

dy

dx
=
−4y3 − 2xy − 3x2 − 5

12xy3 − x2

(3) y = x2 sin y

dy

dx
= x2

d

dx
sin y + sin y

d

dx
x2

dy

dx
= x2 cos y

dy

dx
+ (sin y)(2x)

dy

dx
(1− x2 cos y) = 2x sin y

dy

dx
=

2x sin y

1− x2 cos y

�
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We can use implicit di�erentiation to �nd the derivatives of f(x) = lnx and f(x) = bx.
Many would consider these proofs easier than the previous ones in Chapter 5. So it is worth
reviwing the next example even though we saw it earlier.

Example 7.2. Find the derivatives.

(1) y = lnx

(2) y = bx

Solutions.

(1) y = lnx

Since y = lnx by de�nition
ey = x

Taking derivatives on both sides and using implicit di�erentiation

dy

dx
ey =

d

dx
x

ey
dy

dx
= 1

dy

dx
=

1

ey

dy

dx
=

1

x

(2) Since y = bx we can take log on both sides to get

ln y = ln bx

Using log properties
ln y = x ln b

Taking derivatives on both sides and using implicit di�erentiation

d

dx
ln y =

d

dx
x ln b

1

y

dy

dx
= ln b

dy

dx
= y ln b

dy

dx
= bx ln b
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�

The technique of taking log on both sides requires some explanation. Suppose f is a one-to-
one function, then we can compose f with another one-to-one function g to get g ◦ f . This
is what we are doing when we take log on both sides. The log function is one-to-one. 1 This
means

m = n ⇐⇒ logbm = logbn

The next set of problems involve a new function

f(x) = xx

whose graph is shown in Figure 7.0.1. This is not a power function nor an exponential
function. If x = 1, then y = 11 = 1. Between 0 and 1 the function dips and past 1 it rises.
The function is not de�ned at 0. When x < 0 the situation is more complicated. For example,
if x = −2, y = (−2)( − 2) = 1

(−2)2 = 1
4
. If x = −3, then y = (−3)( − 3) = 1

(−3)3 = 1
−27 .

However, if x = 1
2
, then y = (−0.5)( − 0.5) = 1

(−0.5)−0.5 , which is a complex number. It is
hard to write the domain since the real and complex values of the function are intermingled.
Figure 7.0.1 shows both the real and complex portions of the graph.

Figure 7.0.1. y = xx

Example 7.3. Find the derivatives.

(1) y = xx

(2) y = x
√
x

(3) y = xcosx

1 A function doesn't have to be one-to-one, but then things get a bit messy and must be analyzed on
a case-by-case basis. For example, when solving radical equations, we square both sides and the squaring
function is not one-to-one. As a result we get extraneaous solutions.
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The strategy here is to take log on both sides and to use the log property

logb x
t = t logb x.

Solution.

(1) y = xx

Starting with y = xx, take ln on both sides to get

ln y = lnxx

ln y = x lnx

1

y

dy

dx
= x

d

dx
lnx+ (lnx)

d

dx
x

1

y

dy

dx
= x

1

x
+ (lnx)(1)

dy

dx
= y[1 + ln x]

dy

dx
= xx[1 + ln x]

(2) y = x
√
x

ln y = lnx
√
x

ln y =
√
x lnx

1

y

dy

dx
=
√
x
d

dx
lnx+ (lnx)

d

dx

√
x

1

y

dy

dx
=
√
x

1

x
+ (lnx)

1

2
√
x

1

y

dy

dx
=

1√
x

+ (lnx)
1

2
√
x

1

y

dy

dx
=

1√
x

[1 +
lnx

2
]

dy

dx
=

y√
x

[1 +
lnx

2
]

dy

dx
=
x
√
x

√
x

[1 +
lnx

2
]
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(3) y = xcosx

lny = xcosx

ln y = lnxcosx

ln y = cosx lnx

1

y

dy

dx
= cosx

d

dx
lnx+ (lnx)

d

dx
cosx

1

y

dy

dx
= (cosx)(

1

x
) + (ln x)(− sinx)

dy

dx
= y[

cosx

x
+ (lnx)(− sinx)]

dy

dx
= xcosx[

cosx

x
+ (lnx)(− sinx)]

�

Example 7.4. Find the second derivatives.

(1) x2 + y2 = 10

(2) x4 + y4 = 10

Previously we did not simplify the derivative once we found them since the emphasis was
on knowing and using the formulas and rules correctly. Now it makes sense to simplify the
�rst derivative as much as possible before �nding the second derivative. So the solutions of
these problems can get quite long.

Solution.

(1)
x2 + y2 = 10

d

dx
x2 +

d

dx
y2 =

d

dx
10

2x+ 2y
dy

dx
= 0

x+ y
dy

dx
= 0

dy

dx
= −x

y
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d2y

dx2
= −

y d
dx
x− x d

dx
y

y2

= −
y − x dy

dx

y2
Put

dy

dx
= −x

y

= −
y − x−x

y

y2

= −y
2 + x2

y3
Put x2 + y2 = 10

= −10

y3

(2)
x4 + y4 = 10

d

dx
x4 +

d

dx
y4 =

d

dx
10

4x3 + 4y3
dy

dx
= 0

x3 + y3
dy

dx
= 0

dy

dx
= −x

3

y3
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d2y

dx2
= −

y3 d
dx
x3 − x3 d

dx
y3

y6

= −
y33x2 − x33y2 dy

dx

y6
Put

dy

dx
= −x

3

y3

= −
3x2y3 − 3x3y2−x

3

y3

y6

= −
3x2y3 + 3x6

y

y6

= −3x2y4 + 3x6

y7

= −3x2(y4 + x4)

y7
Put x4 + y4 = 10

= −3x2(10)

y7

= −30x2

y3

�

This chapter concludes the topic of derivatives and how to �nd them. In the next chapter
we will learn a method for �nding limits based on the derivative. In subsequent chapters we
will see some fascinating real world problems.

Practice Problems

(1) Find the derivatives.

a) x2 + y2 = 36

b) x
1
2 + y

1
2 = 9

c) x3 − xy + y2 = 4

d) x3y3 − y = x

e) x3 − 3x2y + 2xy2 = 12

f) sinx+ 2 cos 2y = 1

g) sinx = x(1 + tan y)

h) y = sin(xy)
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(2) Find the second derivative.

a) y = 4x
3
2

b) y = x
x−1

c) y = 3 sin x

d) y = secx

e) 9x2 + y2 − 9

f) x3 + y3 = 1

g) x4 + y4 = 16

h)
√
x+
√
y = 1



CHAPTER 8

L'Hôpital's Rule

L'Hôpital's Rule named after French mathematician Guillaume de L'Hôpital (1661- 1704)
is an incredibly simple and useful way of �nding the limits of complicated functions. It
depends on the derivative, which is why we waited so long to see it. L'Hôpital's published
the rule in his 1696 book Analysis of the In�nitely Small for the Understanding of Curved

Lines, which was the �rst textbook on di�erential calculus. Actually, Swiss mathematician
Johann Bernoulli (1667 â�� 1748), one of Euler's teachers, described this method in response
to a question posed by L'Hôpital, and in his book L'Hôpital credits Bernoulli for this theorem,
but subsequently everyone calls it L'Hôpital's rule.

Figure 8.0.1. Guillaume de L'Hôpital

Theorem 8.1. (L'Hôpital's Rule) Let f and g be functions that are di�erentiable on
an open interval containing a, except possibly at a itself. Let c < a < d and suppose that
g(x) 6= 0 for every x in (c, d). If the limit of f(x)

g(x)
as x approaches a produces the indeterminate

forms 0
0
or ∞∞ , then limx→a

f(x)
g(x)

= limx→a
f ′(x)
g′(x)

, providing it exists or is in�nite.

We will see the proof of this result in Chapter 12. But we can begin using it right away.
Note that L'Hôpital Rule applies to functions of the form 0

0
or ∞∞ . We will see later that it

can also be used for other indeterminate forms such as 0×∞ and 1∞.

84
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Example 8.2. Use L'Hôpital's Rule to �nd the limits, if possible.

(1) limx→1
lnx
x−1

(2) limx→∞
ex

x2

(3) limx→∞
lnx
3√x

(4) limx→0
tanx−x
x3

Solution.

(1) Observe that limx→1
lnx
x−1 has 0

0
form. So

lim
x→1

lnx

x− 1
= lim

x→1

1
x

1
= 1

(2) Observe that limx→∞
ex

x2
has ∞∞ form. So

lim
x→∞

ex

x2
= lim

x→∞

ex

2x

Now we can apply L'Hôpital Rule's again since limx→∞
ex

2x
again has ∞∞ form. So

lim
x→∞

ex

2x
= lim

x→∞

ex

2
=∞

.

Putting it all together (without using so many words) we get

lim
x→∞

ex

x2
= lim

x→∞

ex

2x

= lim
x→∞

ex

2x

= lim
x→∞

ex

2
=∞
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(3) Observe that limx→∞
lnx
3√x has ∞∞ form. So

lim
x→∞

lnx
3
√
x

= lim
x→∞

1
x

1
3
x−

2
3

= lim
x→∞

3

xx−
2
3

= lim
x→∞

3
3
√
x

= 0

(4) Observe that limx→0
tanx−x
x3

has 0
0
form.

lim
x→0

tanx− x
x3

= lim
x→0

sec2 x− 1

3x2

= lim
x→0

2 sec2 x tanx

6x

=

(
1

3
lim
x→0

sec2 x

)
·
(

lim
x→0

tanx

x

)
=

1

3
· lim
x→0

sec2 x

1

=
1

3
· 1

=
1

3

�

Next, let us consider problems of the type f(x)g(x) where one function tends to zero and
the other tends to ±∞. In such cases, it isn't clear whether f(x) or g(x) will dominate in
the limit. This kind of indeterminate form is of type 0 · ∞. Our strategy is to write f · g as
f
1
g

or g
1
f

so that it will have either 0
0
or ∞∞ form.

Example 8.3. Find the limits.

(1) limx→0+ x lnx

Solution.
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(1) We write limx→0+ x lnx as limx→0+
lnx
1
x

which is in the −∞∞ form. So L'Hôpital's

Rule applies and we get

lim
x→0+

x lnx = lim
x→0+

lnx
1
x

= lim
x→0+

1
x

− 1
x2

= lim
x→0+

−x

= 0

�

Lastly, consider function of the indeterminate form 1∞. In this case, we take log on both
sides and turn it into a function of the form f(x)g(x) and use the previous approach.

Example 8.4. Find the limits.

(1) limx→∞
(
1 + 1

x

)x
(2) limx→0+ (sinx)x

Solutions.

(1) Let y = limx→∞
(
1 + 1

x

)x
and take ln on both sides

ln y = ln lim
x→∞

(
1 +

1

x

)x
= lim

x→∞
x ln

(
1 +

1

x

)
= lim

x→∞

ln
(
1 + 1

x

)
1
x

= lim
x→∞

1
1+ 1

x

·
(
− 1
x2

)
− 1
x2

(by L'Hôpital's Rule)

= lim
x→∞

1

1 + 1
x

= 1

Since ln y = 1, it follows that y = e.

(2) Let y = limx→0+ (sinx)x and take ln on both sides.
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ln y = lim
x→0+

x ln(sinx)

= lim
x→0+

ln sinx
1
x

(which has
∞
∞

form)

= lim
x→0+

1
sinx

cosx

− 1
x2

= lim
x→0+

cotx

− 1
x2

= lim
x→0+

−x2

tanx
(which has

0

0
form)

= − lim
x→0+

2x

sec2 x
= 0

Since ln y = 0, it follows that y = e0 = 1.

�

Practice Problems

Find the limit if it exists.

(1) limx→1
x2−1
x2−x

(2) limx→1
x9−1
x5−1

(3) limx→2
x2+x+6
x−2

(4) limx→π
2
+

cosx
1−sinx

(5) limx→0
sin 4x
tan 5x

(6) limx→0
ex−1
x3

(7) limx→0
e3x−1
x

(8) limx→∞
x+x2

1−2x2

(9) limx→∞
lnx
x

(10) limx→0+
lnx
x
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(11) limx→∞
ex

x3

(12) limx→0(1− x)
1
x

(13) limx→0+(tanx)x
2

(14) limx→∞(lnx)
1
x

(15) limx→0+(1 + sin 4x)cotx

(16) limx→∞(ex + x)
1
x



CHAPTER 9

Related Rates

Related rates is the phrase used to describe the situation when two or more related
variables are changing with respect to time. The rate of change, as mentioned earlier, is
another expression for the derivative. For example, suppose water is draining from a cone
with a hole in the bottom. We have the �xed height of the cone and the radius of its base
and the changing height of the water and radius of its base. At the begining they are the
same. After, for example, 10 seconds of water draining, the height of the water in the cone
changes and will continue changing until all the water is drained out of the cone. The volume
of a cone is given by the formula

V =
π

3
r2h

shown in Figure 9.0.1 To �nd the volume of a cone and other geometric objects, type �Volume
of a cone� in Google Search and the interactive Google Calculator shown in Figure 9.0.1 will
come up.

Figure 9.0.1. V = π
3
r2h

There are three variables in this formula, V , r, and h, all changing at di�erent, but
related, rates with respect to t. Suppose we di�erentiate both sides of the formula implicitly
with respect to t. Then by the product rule we get

dV

dt
=
π

3

[
r2
dh

dt
+ h

d

dt
r2
]

dV

dt
=
π

3

[
r2
dh

dt
+ 2rh

dr

dt

]
The above equation is an equation with derivatives. It describes how the rate of change of
volume V is related to the rates of change of height h and radius r. If we are given r, dr

dt
, h

90
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and dh
dt
, then we can �nd dV

dt
. What makes some of these problems slightly tricky is that we

are usually given one or two terms and we have to derive the rest. In any case, the cone is
not the best �rst example to begin with. We will start with some easier examples. But �rst
we must review some formulas from geometry.

(1) Volume of a cylinder = πr2h, where r is the radius of the base and h is the height;

(2) Surface area of a cylinder = 2πr(r + h);

(3) Volume of a sphere = 4
3
πr3;

(4) Surface area of a sphere = 4πr2, where r is the radius of the base and h is the height;

(5) Volume of a cone = π
3
πr2h, where r is the radius of the base and h is the height;

(6) Surface area of a cone = πr(r +
√
r2 + h2).

The area of a circle and the volume and surface area of a cylinder were known well before
Archimedes (c. 287 BC - 212 BC). In his paper Sphere and Cylinder Archimedes gave the
formulas for the volume and surface area of a sphere. He showed that the ratio of the volume
of a sphere to the volume of the cylinder that contains it is 2:3 and the ratios of the surface
areas is also 2:3. He was so pleased with this formula that he wanted a circle inscribed in
a cylinder and the ratio 2:3 inscribed on his tomb. Archimedes was killed by a thoughtless
Roman soldier who had no idea who he was, as he was thoughtfully drawing circles on the
sand (see Figure 9.0.2). 1 His well-known last words were �Don't disturb my circles.� With
time the location of his tomb was forgotton. Roman Philosopher Marcus Tullius Cicero
(106 BC - 43 BC) discovered his tomb over a hundred years later and recognized it by the
inscription of a circle inside a cylinder.

Example 9.1. (Pebble in Pond) A pebble is dropped into a calm pond, causing ripples
in the form of concentric circles. The radius r of the outer ripple is increasing at a constant
rate of 2 foot per second. When the radius is 6 feet, at what rate is the area of the disturbed
water changing?

Solution. The formula for the area of the disturbed water is

A = πr2

Di�erentiating implicitly with respect to time t

d

dt
A =

dr

dt

[
πr2
]

dA

dt
= 2πr

dr

dt

1An illustration from the page of an unidenti�ed book in the �les of the Print and Picture Collection of the
Free Library of Philadelphia. http://www.math.nyu.edu/ crorres/Archimedes/Death/DeathIllus.html
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Figure 9.0.2. Tod des Archimedes

Since r = 6 and dr
dt

= 2 feet per second,

dA

dt
= 2π(6)(2) = 24π

Therefore the rate of change of the area is 24π square feet per second. �

Example 9.2. (In�ating Balloon) Air is being pumped into a spherical balloon at a
rate of 5 cubic feet per minute. What is the rate of change of the radius when the radius is
2 feet?

Solution. The formula for the volume of the in�ating baloon is

V =
4

3
πr3

Di�erentiating implicitly with respect to time t

d

dt
V =

d

dt

[
4

3
πr3
]

dV

dt
=

4

3
3πr2

dr

dt

Since r = 2 and dV
dt

= 5

5 = 4π(22)
dr

dt
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5 = 16π
dr

dt

dr

dt
=

5

16π

Therefore the rate of change of the radius is 5
16π

square feet per second. �

Example 9.3. (Flying Airplane) An airplane is �ying over a radar tracking station at a
height of 6 miles. Suppose the distance is decreasing at a rate of 400 miles per hour. What
is the velocity of the plane when the distance is 10 miles?

radar

airplane

z
y = 6

x

Solution. Since the triangle is a right triangle, by the Pythagorean Theorem

x2 + y2 = z2

where x is the horizontal distance, y is the vertical distance and the hypotenuse z is the
distance of the airplane from the station. In this problem, x and z are changing, but the
height of the plane is �xed at y = 6. So the equation is

x2 + 62 = z2

Di�erentiating implicitly with respect to time t

d

dt
x2 +

d

dt
62 =

d

dt
z2

2x
dx

dt
= 2z

dz

dt

x
dx

dt
= z

dz

dt

We are given that y = 6 (which we already used) and z = 10. By the Pythagorean Theorem
we can �nd x as

x2 = z2 − y2 = 102 − 62 = 64

So x = 8. We are also given dz
dt

= −400 (the negative sign stands for decreasing distance).

8
dx

dt
= 10(−400)

dx

dt
= −500
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The airplane is approaching the radar station at the rate of 500 miles per hour. �

Example 9.4. (Sliding Ladder) A ladder 10 feet long rests against a vertical wall. If
the base of the ladder slides away from the wall at a rate of 1 foot per second, how fast is
the top of the ladder sliding down the wall when the bottom is 6 feet away from the wall?

ladder base

ladder top

z = 10
wall y

x

Solution. Since the triangle is a right triangle, by the Pythagorean Theorem

x2 + y2 = z2

where x is the horizontal distance of the ladder from the wall, y is the wall, and the hy-
potenuse z is the length of the ladder. In this problem, x and y are changing, but the length
of the ladder is �xed at z = 10. So the equation is

x2 + y2 = 102

Di�erentiating implicitly with respect to time t

d

dt
x2 +

d

dt
y2 =

d

dt
100

2x
dx

dt
+ 2y

dz

dt
= 0

x
dx

dt
+ y

dz

dt
= 0

We are given that z = 10 (which we already used) and x = 8. By the Pythagorean Theorem
we can �nd y as

y2 = z2 − x2 = 102 − 82 = 36

So y = 6. We are also given dx
dt

= 1. We must �nd dx
dt
.

8(1) + 6
dy

dt
= 0

dy

dt
= −8

6

The ladder is sliding down the wall at the rate of 1.3̄ feet per second. �
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Example 9.5. (Moving Car) Car A is traveling west at 50 miles per hour and car B is
traveling north at 60 miles per hour. Both are headed for the intersection of two roads. At
what rate are the cars approaching each other when car A is 0.3 miles from the intersection
and car B is 0.4 miles from the intersection?

Solution. Since the triangle is a right triangle, by the Pythagorean Theorem

x2 + y2 = z2

where x is the horizontal distance west travelled by Car A, y is the vertical distance north
travelled by the Car B, and the hypotenuse z is the distance between the cars, which is
shrinking.

x2 + y2 = z2

Di�erentiating implicitly with respect to time t

d

dt
x2 +

d

dt
y2 =

d

dt
z2

2x
dx

dt
+ 2y

dz

dt
= 2z

dz

dt

x
dx

dt
+ y

dz

dt
= z

dz

dt
We are given that x = 0.3 and y = 0.4. By the Pythagorean Theorem we can �nd z as

z2 = x2 + y2 = 0.32 + 0.42 = 0.25

So z = 0.5. We are also given dx
dt

= −50 miles per hour and dy
dt

= −60 miles per hour. The
signs are negative because the cars are �approaching� the intersection. In other words the
distance between the cars and the intersection is decreasing.

x
dx

dt
+ y

dy

dt
= z

dz

dt

0.3(−50) + 0.4(−60) = 0.5
dz

dt
dz

dt
= −78

The cars are approaching each other at 78 miles per hour. �

Example 9.6. (Water Tank) A water tank has the shape of an inverted cone with a base
of radius of 2 meters and height 4 meters. If water is being pumped into the tank at a rate
of 2 cubic meters per minute, �nd the rate at which the water level is rising when the water
is 3 meters deep.
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Solution. The volume of a cone is
V =

π

3
r2h

where r is the radius of the base, h is the height of the cone. We are given r = 2 and h = 4.
Based on this we can conclude r = h

2
. (Note this is true only for this particular problem.)

V =
π

3
r2h

=
π

3
(
h

2
)2h

=
πh3

12

Di�erentiate implicitly with respect to t

dV

dt
=

3π

12
h2
dh

dt

2 =
π

4
h2
dh

dt
dh

dt
=

8

9π

The rate at which the water level is rising is 8
9π

meters per minute. �

Example 9.7. A man walks along a straight path at a speed of 4 feet per second toward a
pole with a searchlight on top. The height of the searchlight is 20 feet and it is kept focused
on the man rotating downward as the man moves. At what rate is the searchlight rotating
when the man is 15 feet from the pole?

man

search light

z
y = 20

x

Solution. From the above triangle

x2 + y2 = z2

where x is the distance of the man from the pole, y = 20 is the height of the searchlight
(which is �xed) and the hypotenuse z is the distance of the man from the search light. The
equation to be used here is

tan θ =
x

20
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since we want the angle of rotation of the searchlight and it rotates downwards toward the
man as he approaches the pole. Di�erentiating implicitly with respect to t gives

sec2 θ
dθ

dt
=

1

20

dx

dt

In order to �nd dθ
dt

we need sec θ and dx
dt
. We are given that dx

dt
= −4 feet per second. The

negative sign appears since the man is approaching the pole. But we have to �nd sec θ from
the available information. Using the fact that x = 15 and y = 20, by the Pythagorean
Theorem

z = x2 + y2 = 152 + 202 = 625

So z = 25 and from the right triangle we get

cos θ =
20

25
=

4

5

so
sec θ =

5

4
.

Putting it together we get

dx

dt
= 20 sec2 θ

dθ

dt

−4 = 20

(
5

4

)2
dθ

dt

dθ

dt
= − 4

20

(
4

5

)2

= − 16

125

The searchlight is rotating at a rate of − 16
125

radians per second. �

There are two things to note in the above problem. First the angle is negative since the
searchlight is rotating downward. Moreover, the number is angle measure in radians. In
degrees the angle is

− 16

125
× 180

π
≈ −7.34◦

Second we could have used x = 15 and y = 20 to write

tan θ =
x

y
=

15

20

and �nd θ = 36.87◦ using the inverse tangent key on a calculator. Then we could put
θ = 36.87◦ in the related rates equation

sec2 θ
dθ

dt
=

1

20

dx

dt
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As you can see from the last two problems, if all the information is not directly given in
the statement of the problem itself, then the problem requires more thought. These sorts of
multi-step problems, where you have to �gure out one thing and use it to get the next thing,
and so on, are typical of real-world problems. However, the above problems are contrived
like cardboard cut-outs of real-world problems. It is worth doing a few of these contrived
problems to master the techniques and leave it at that.

Practice Problems

(1) A pebble is dropped in a calm pond causing ripples to form in concentric circles.
The radius of the outer ripple is increasing at a constant rate of 1 foot per second.
When the radius is 4 feet, at what rate is the area of disturbed water changing?

(2) Air is pumped into a spherical balloon at a rate of 5 cubic feet per minute. �nd the
rate of change of the radius when the radius is 3 feet.

(3) Air is pumped into a spherical balloon so that the volume increases at a rate of 100
cubic centimeters per second. How fast is the radius of the balloon increasing when
the diameter is 50 centimeters?

(4) If a snowball melts so that its surface area decreases at a rate of 2 square centimeters
per minute, �nd the rate at which the diameter decrease when the diameter is 10
centimeters.

(5) All edges of a cube are expanding at a rate of 3 centimeters per second. How fast
is the volume changing when each edge is 10 centimeters?

(6) A water tank has the shape of an inverted circular cone with base radius 2 meters
and height 4 meters. If water is being pumped into the tank at a rate of 2 cubic
meters per minute, �nd the rate at which the water level is rising when the water
is 3 meters deep.

(7) Gravel is being dumped from a conveyor belt at a rate of 30 cubic feet per minute
and forms a conical pile whose base diameter and height are equal. How fast is the
height of the pile increasing when the pile is 10 feet high?

(8) Sand is falling o� a conveyor belt onto a conical pile at a rate of 10 cubic feet per
minute. The diameter of the base of the cone is three times the height. At what
rate is the height of the pile changing when the pile is 15 feet high?

(9) A conical tank with vertex down is 10 feet across at the top and 12 feet deep. If
water is �owing into the tank at a rate of 10 cubic feet per minute, �nd the rate of
change of the depth of the water when the water is 8 feet deep.

(10) An airplane is �ying over a radar tracking station at a height of 6 miles. If the
distance between the plane and the station is decreasing at a rate of 400 miles per
hour, when the distance is 10 miles, what is the speed of the plane?
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(11) A ladder 10 feet long rests against a vertical wall. If the bottom of the ladder slides
away from the wall at a rate of 1 foot per second, how fast is the top of the ladder
sliding down the wall, when the bottom is 6 feet from the wall?

(12) Car A is traveling west at 50 miles per hour and car B is traveling north at 60 miles
per hour headed for the intersection of the two roads. At what rate are the cars
approaching each other when car A is 0.3 miles and car B is 0.4 miles from the
intersection?

(13) Two cars start moving from the same point. One travels south at 60 miles per hour
and the other travels west at 25 miles per hour. At what rate is the distance between
the cars increasing 2 hours later?



CHAPTER 10

Maxima and Minima

Arguably the whole purpose of derivatives is to determine the maximum and minimum
of functions. Take a look at Figure 10.0.1. It shows the graph of the quadratic function
f(x) = −x2 + 8x + 20. Reading the graph from left to right, observe how the graph rises
(increases) on the left reaches the highest point at the vertex and then falls (decreases) on
the right. Notice how the graph is rapidly increasing at �rst and then as it approaches the
vertex, the rate of increase although still positive decreases. The rate of change is the slope
of the tangent line. Imagine small tangent lines draw at various points on the graph. At the
vertex the tangent line becomes horizontal (the slope is zero). Then the slope of the tangent
line gradually becomes negtive, slowly at �rst, then faster and faster.

Figure 10.0.1. f(x) = −x2 + 8x+ 20

We have an easy formula for �nding the vertex of a quadratic function f(x) = ax2 + bx+ c.
The x-coordinate of the vertex is

x = − b

2a
.

So the x-coordinate of vertex of f(x) = −x2 + 8x+ 20 is

x = − 8

2(−1)
= 4.

The y-coordinate of the vertex is

f(4) = −(4)2 + 8(4) + 20 = −16 + 32 + 20 = 36.

Thus, the vertex of f(x) = −x2 + 8x + 20 is (4, 36). But what if the functions are f(x) =
x4 − 8x2 + 16 or g(x) = x5 − 8x3 + 16x whose graphs are shown in Figure 10.0.2. We don't
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Figure 10.0.2. f(x) = x4 − 8x2 + 16 (left) and g(x) = x5 − 8x3 + 16x (right)

have formulas for the highest and lowest points like we did for quadratic functions. You may
think that zooming into the graph will help, and it might work sometimes, but not always.
In his article �Change we can believe in� Steven Strogatz describes local maxima and minima
as follows:

There's a more general principle at work here - things always change slowest
at the top or the bottom. It's especially noticeable here in Ithaca. During
the darkest depths of winter, the days are not just unmercifully short;
they barely improve from one to the next. Whereas now that spring is
popping, the days are lengthening rapidly. All of this makes sense. Change
is most sluggish at the extremes precisely because the derivative is zero
there. Things stand still, momentarily. This zero-derivative property of
peaks and troughs underlies some of the most practical applications of
calculus. It allows us to use derivatives to �gure out where a function
reaches its maximum or minimum, an issue that arises whenever we're
looking for the best or cheapest or fastest way to do something.

Let's take a careful look at a very familiar function, namely, f(x) = x2 whose graph is
shown in Figure 10.0.3 alongside its derivative f ′(x) = 2x and second derivative f ′′(x) = 2.
There is a close relationship between the graph of the function and the graph of its �rst and
second derivative. Observe that

• Over the interval (−∞, 0), f is decreasing and f ′ is negative;

• Over the interval (0,∞), f is increasing and f ′ is negative;

• f is concave up and f ′′ is positive.

Similarly, the graph of f(x) = −x2 and its derivatives f ′(x) = −2x and f ′′(x) = 2 are shown
in Figure 10.0.4. Observe that

• Over the interval (−∞, 0), f is increasing and f ′ is positive;

• Over the interval (0,∞), f is decreasing and f ′ is negative;

• f is concave down and f ′′ is positive.
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Figure 10.0.3. f(x) = x2, f ′(x) = 2x, f ′′(x) = 2

Figure 10.0.4. f(x) = −x2, f ′(x) = −2x, f ′′(x) = −2

When the function is increasing, the slope of the tangent line at each point on the
increasing portion is positive. So the derivative (which is the slope of the tangent line) is
positive. When the function is decreasing, slope of the tangent line at each point on the
decreasing portion is negative. So the derivative is negative. Thus it would be reasonable to
conclude that

• f is increasing on (a, b) if and only if f ′ is positive on (a, b); and

• f is decreasing on (a, b) if and only if f ′ is negative on (a, b).

Moreover,

• f is concave up on (a, b) if and only if f ′′ is positive on (a, b); and

• f is concave down on (a, b) if and only if f ′′ is negative on (a, b);.

These items are useful for determining the shape of the derivative based on the shape
of the graph. For example, consider the functions f(x) = (x − 5)2, g(x) = x3, and h(x) =
−|x+ 4| shown in Figure 10.0.5. Observe that

• f(x) = (x−5)2 is decreasing on (−∞, 5) and increasing on (5,∞). So f ′ is negative
on (−∞, 5) and positive on (5,∞)

• g(x) = x3 is increasing on (−∞,∞). So g′ is positive throughout (−∞,∞).

• h(x) = −|x + 4| is increasing on (−∞,−4) and decreasing on (−4,∞). So h′ is
positive on (−∞,−4) and negative on (−4,∞).
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Figure 10.0.5. f(x) = (x− 5)2, g(x) = x3, h(x) = −|x+ 4|

Note how we can describe quite well the shape of the derivative based soley on the graph of
the function. Now let us introduce some terminology to express these ideas.

De�nition: Critical Point, Local and Global Maxima and Minima

Let f be a real-valued function and p be a point in the domain of f .

(1) We say p is a critical point if either f ′(p) = 0 or f ′(p) is unde�ned.

(2) We say f(p) is a local maximum if f(x) ≤ f(p) for all x in an open interval (a, b)
containing p.

(3) We say f(p) is a local minimum if f(x) ≥ f(p) for all x in an open interval (a, b)
containing p.

(4) We say f(p) is the global maximum if f(x) ≤ f(p) for all x in the domain of f .

(5) We say f(p) is the global minimum if f(x) ≥ f(p) for all x in the domain of f .

Theorem 10.1. (Rolle's Theorem) Suppose f is continuous on [a, b] and di�erentiable
on (a, b). If f(a) = f(b), then f ′(c) = 0 for at least one c ∈ (a, b).

Proof: There are three possibilities: f(x) > f(a); f(x) < f(a); and f(x) = f(a).

(1) Suppose f(x) > f(a) for some x ∈ (a, b). Then the maximum value of f in [a, b] is
greater than f(a) or f(b) and occurs at some c ∈ (a, b). By hypothesis f ′ exists on
(a, b), so f ′(c) = 0.

(2) Suppose f(x) < f(a) for some x ∈ (a, b). Then the minimum value of f in [a, b] is
less than f(a) or f(b) and occurs at some c ∈ (a, b). Again, since f ′ exists on (a, b),
f ′(c) = 0.

(3) Lastly, suppose f(x) = f(a) for all x ∈ (a, b). Then f is a constant function and
f ′(c) = 0 for all c ∈ (a, b).
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Hence proved. �

Michael Rolle was a 17th century mathematician who published a book titled Traité

d'Algebre in 1690. It contains the �rst proof of Rolle's Theorem as well as the �rst pub-
lication of the Gaussian elimination algorithm (both of which were well known to Eastern
mathematicians). Rolle's theorem is the basis for the First and Second Derivative Tests for
�nding local extrema.

Corollary 10.2. (First Derivative Test for Local Extrema) Suppose f is a function
with critical point p and f is di�erentiable on (a, b) except possibly at p.

(1) If f ′ is positive to the left of p and negative to the right of p, then p is a local
maximum of f .

(2) If f ′ is negative to the left of p and positive to the right of p, then p is a local
minimum of f .

Example 10.3. Use the First Derivative Test to �nd the local extrema, if they exist.

(1) f(x) = x3 − 9x2 − 48x+ 52

(2) f(x) = x
x2+1

(3) f(x) = x3

(4) f(x) = x4

Solution: There are three steps in a local extrema problem: di�erentiate; �nd the critical
points; use the First Derivative Test.

(1) f(x) = x3 − 9x2 − 48x+ 52 and f ′(x) = 3x2 − 18x− 48

To �nd the critical points solve the equation f ′(x) = 0:

3x2 − 18x− 48 = 0

x2 − 6x− 16 = 0

(x− 8)(x+ 2) = 0

x = 8,−2

Thus, the critical points are x = 8 and x = −2. Mark them on a number line and
determine the intervals where the function is positive and negative as shown below:
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Since f ′ is positive to the left of -2 and negative to the right of -2, a local maximum
occurs at −2. The value of the local maximum is

f(−2) = (−2)3 − 9(−2)2 − 48(−2) + 52 = 104.

Since f ′ is negative to the left of 8 and positive to the right of 8, a local minimum
occurs at 8. The value of the local minimum is

f(8) = (8)3 − 9(8)2 − 48(8) + 52 = −396.

(Note that once the technique is mastered the problem can be solved with fewer
words.)

(2)

f(x) =
x

x2 + 1

f ′(x) =
1− x2

(x2 + 1)2

Critical Points:

1− x2 = 0

x = ±1

Since f ′ is positive to the left of -1 and negative to the right of -1, a local maximum
occurs at −1. The value of the local maximum is

f(−1) = −1

2
.

Since f ′ is negative to the left of 1 and positive to the right of 1, a local minimum
occurs at 1. The value of the local minimum is

f(1) =
1

2
.

(3)
f(x) = x3

f ′(x) = 3x2
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Critical Points:

3x2 = 0

x = 0

Observe from the above diagram that the sign of f ′ does not change around 0. So
no local extrema occurs at x = 0. This can be con�rmed by looking at its graph in
Figure 10.0.6.

(4)
f(x) = x4

f ′(x) = 4x3

Critical Points:

4x3 = 0

x = 0

Since f ′ is negative to the left of 0 and positive to the right of 0, a local minimum
occurs at 0. The value of the local maximum is f(0) = 0.

�

Figure 10.0.6. f(x) = x3
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The First Derivative Test also makes clear where the function is increasing and where it is
decreasing. Graphs with increasing, decreasing, and constant parts have cusps at the end of
the constant parts which must be determined. But polynomial functions are straightforward.
In Example 10.4 (1) the diagram indicates that f(x) = x3−9x2−48x+52 is decreasing over
interval (−∞,−2) increasing over interval (−2, 2) and decreasing over (8,∞). The graph of
this function is shown in Figure 10.0.7, con�rming the analysis of the First Derivative Test.

Figure 10.0.7. f(x) = x3 − 9x2 − 48x+ 52

Similarly, in 10.4(2) the function f(x) = x
x2+1

is decreasing on (−∞, 1) ∪ (1,∞) and
increasing on (−1, 1). The graph is shown in Figure 10.0.8.

Figure 10.0.8. f(x) = x
x2+1

Next, we can use concavity and the second derivative to determine local maxima and
minimum

Corollary 10.4. (Second Derivative Test for Local Extrema) Suppose f is a function
with critical point p and f is di�erentiable on (a, b) except possibly at p.

(1) If f ′′(p) < 0 then p is a local maximum of f .

(2) If f ′′(p) > 0, then p is a local minimum of f .
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Example 10.5. Find the local extrema, if they exist. Use the second derivative test.

(1) f(x) = x3 − 9x2 − 48x+ 52

(2) f(x) = xe−x

(3) f(x) = x+ 1
x

Solutions.

(1) f(x) = x3 − 9x2 − 48x+ 52

As we saw in the previous example, f ′(x) = 3x2 − 18x − 48 and f ′′(x) = 6x − 18
and f has critical points at x = −2 and x = 8.

Applying the Second Derivative Test, since f ′′(−2) = −30 < 0, f has a local
maximum at −2. Since f ′′(8) = 30 > 0, so f has a local minimum at 8.

(2) f(x) = xe−x

f ′(x) = e−x − xe−x = e−x(1− x)

f ′′(x) = −e−x(1− x)− e−x = e−x(x− 2)

To �nd the critical points set e−x(1− x) = 0 and solve for x. Since the exponential
function is never 0, the only way e−x(1− x) can be 0 is when 1− x = 0. So x = 1.
Thus f has a critical point at x = 1. Applying the Second Derivative Test, since
f ′′(1) = −e−1 < 0, f has a local maximum at 1.

(3) f(x) = x+ 1
x

f ′(x) = 1− 1

x2

f ′′(x) =
2

x3

Critical Points:

1− 1

x2
= 0

1

x2
= 1

x2 = 1

x = ±1

So f has critical points at x = ±1. Applying the Second Derivative Test, since
f ′′(−1) < 0, f has a local maximum at −1. Since f ′′(1) > 0, f has a local minimum
at 1.
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�

Arguably the Second Derivative Test is faster to use than the First Derivative Test, but
only when the second derivative is easy to �nd and it doesn't always work. For example,
consider the function

f(x) = x4

whose local minimal was found to be x = 0 using the First Derivative Test. Observe that
f ′(x) = 4x3 and f has a critical point at x = 0. However, f ′′(x) = 12x2 so f ′′(0) = 0.
In this case, the Second Derivative Test failed. The First Derivative Test always works.
Moreover, the First Derivative Test also clearly indicates the intervals over which the function
is increasing and decreasing as explained earlier.

Corollary 10.6. (Test for concavity) Suppose f is a function di�erentiable on an open
interval (a, b) containing c and suppose f ′′(c) exists.

(1) If f ′′(c) > 0, then f ′(x) is increasing at c, and f is concave up at c.

(2) If f ′′(c) is negative, then f ′(x) is decreasing at c, and f is concave down at c.

De�nition: An in�ection point is a point on a curve at which a change in the direction
of curvature occurs. (The concavity changes.)

Observe that the tangent line to the curve at a point is above the curve for the concave
down portion (or convex portion) and below the curve for the concave up portion. The
in�ection point is where it moves from one side to the other. 1 It can be di�cult to
determine concavity just by looking at the graph, especially if the concavity is slight. The
Test for Concavity gives a precise way of �nding the in�ection points.

Theorem 10.7. (Test for in�ection points) Suppose f is a function di�erentiable on an
open interval (a, b) containing k and suppose f ′′(k) = 0. Then k is an in�ection point if and
only if f ′′ changes signs around k.

Example 10.8. Find the in�ection points, if they exist.

(1) f(x) = x3

(2) f(x) = x3 − 9x2 − 48x+ 52

(3) f(x) = x4 − x

Solutions. We will �nd the �rst and second derivatives and use the Test for Infection points.

1The Wikipedia page for �In�ection Points" has an animated gif showing how the tangent line to the
curve changes from one side of the curve to the other at the in�ection point.
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(1) Observe that

f(x) = x3

f ′(x) = 3x2

f ′′(x) = 6x

Candidates for in�ection points are obtained by setting f ′′(x) = 0 and solving.

6x = 0

x = 0

From the diagram above, observe that f ′′ is negative to the left of 0 and positive to
the right of 0. Since the sign of f ′′ changes using the Test for In�ection Points, we
cans ay an in�ection point occurs at 0. The infection point is (0, 0).

(2)

f(x) = x3 − 9x2 − 48x+ 52

f ′(x) = 3x2 − 18x− 48

f ′′(x) = 6x− 18

Candidates for infection points:

6x− 18 = 0

x = 3

From the diagram above, since the sign of f ′′ changes about x = 3, an in�ection
point occurs at 3. The infection point is (3, f(3)).

(3)

f(x) = x4 − x
f ′(x) = 4x3 − 1

f ′′(x) = 12x2

Candidates for infection points:

f ′′(x) = 0

12x2 = 0

x = 0

However, f ′′ does not change sign around x = 0. So x = 0 is not an in�ection point.
This function has no in�ection point. See the graph of f(x) = x4 − x in Figure
10.0.9.
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Figure 10.0.9. f(x) = x4 − x

�

Finding the intervals over which the function is increasing and decreasing, the local
extrema, and the in�ection points helps in drawing a good graph. For example take a look
at the graph of f(x) = x3 in Figure 10.0.6 and observe the way the curvature changes at
x = 0. In fact, have you ever wondered why f(x) = x3 looks the way it does? After all
we plot by hand just a few points and even though the computer can plot a point for every
pixel, it is still just plotting points. There are in�nite real numbers between every pair of
real numbers, so how do we know something strange does not occur at points to �ne to plot.
The shape of the graph is governed by the local extrema and in�ection points.

Practice Problems

(1) For each function �nd the following, if they exist:

i) The critical points

ii) The local extrema using the �rst derivative test

iii) The intervals over which the function is increasing and decreasing

iv) The local extrema using the second derivative test (if possible)

v) The in�ection points

a) f(x) = 5x2 + 4x

b) f(x) = 3x2 − 12x+ 5

c) f(x) = (x2 − 1)3

d) f(x) = x3 + 3x2 − 24x

e) f(x) = x3 + x2 − x
f) f(x) = 3x4 + 3x3 − 6x2
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g) f(x) = |3x− 4|
h) f(x) = x

x2+1

i) f(x) = x−1
x2−x+1

j) f(x) = x−1
x2+4

k) f(x) =
√

1− x2

l) f(x) = x2e−3x

m) f(x) = lnx
x2



CHAPTER 11

Optimization

In this chapter we take our new found ability to �nd the maximum and minimum of
functions and apply it to all sorts of real world situations. As Euler said

Since the fabric of the universe is most perfect and the work of a most wise
Creator, nothing at all takes place in the universe in which some rule of
maximum or minimum does not appear.

We now know the universe is not as predictable as the golden age mathematicians believed it
to be. Nonetheless, many real world phenomena can be reduced to a local extrema problem.

Example 11.1. (Maximizing Area) A farmer has 2400 feet of fence and he wants to
fence o� a rectangular �eld that borders a straight river. He needs no fence along the river.
What are the dimensions of the �eld that has the largest area?

Solution. Suppose l is the length and w is the width of the �eld. The area A of the �eld is

A = lw

and the perimeter P is
P = 2w + l

since one side is not fenced (it could be l or w that appears once).

The problem speci�es that the perimeter is �xed at 2400, which is the amount of fence
the farmer has. Using the perimeter formula we get

P = 2w + l

2400 = 2w + l

l = 2400− 2w.

Substitute the value of l in the area formula to get

A = lw = (2400− 2w)w = 2400w − 2w2.

113
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Since the problem asks for the largest area, the function to maximize is A = 2400w−2w2. We
can use the First Derivative Test or Second Derivative Test. Let's try the Second Derivative
Test since it is shorter. The derivative is

A′ = 2400− 4w.

The critical point is

A′ = 0

2400− 4w = 0

−4w = 2400

w = 600.

The second derivative is
A′′ = −4.

Since the second derivative is negative, A has a maximum at

w = 600.

The corresponding value of l is

l = 2400− 2w = 2400− 2(600) = 1200.

Therefore, the �eld with the largest area has w = 600 feet and l = 1200 feet. �

Example 11.2. (Maximizing Volume) An open box having a square base and a surface
area of 108 square inches must be constructed. What dimensions will produce a box with
maximum volume?

Solution: Suppose the box has a square base of length x and height h. The volume of the
box is

V = x2h

and the surface area is
S = x2 + 4xh.
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The problem speci�es that the surface area is �xed at 108 square inches. Using the
surface area formula

S = x2 + 4xh

108 = x2 + 4xh

108− x2 = 4xh

h =
108− x2

4x
.

Substitute the value of h in the volume formula to get

V = x2h = x2
(

108− x2

4x

)
= 27x− x3

4
.

The �rst and second derivatives are

V ′ = 27− 3

4
x2

V ′′ = −3

2
x

The critical points are

V ′ = 0

27− 3

4
x2 = 0

3

4
x2 = 27

x2 = 36

x = ±6.

Using the second derivative test, V ′ is negative at x = 6. So V is maximum at

x = 6.

The corresponding value of h is

h =
108− 36

36
= 2.

Therefore the dimensions giving the maximum volume are x = 6 inches and h = 2 inches.
�

Example 11.3. (Maximizing Surface Area) A cylindrical can must be constructed
to hold 1000 cubic centimeters of oil. Find the dimensions that minimize the cost of the
materials needed to manufacture the can.
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Solution: Suppose the radius of the can's base is r and height is h. Volume of the can is

V = πr2h.

The surface area of the can is the area of the top and bottom circles which is 2 × πr2 and
the area of the cylinderical part. This portion unfolds to a rectangle with one side h and the
other side 2πr, so its area is 2πr × h. Thus the surface area of a cylinderical can is

S = 2πr2 + 2πrh.

The problem speci�es that the volume is �xed at 1000 cubic centimeters. So

1000 = πr2h

h =
1000

πr2
.

Substitute h is the surface area formula to get

S = 2πr(r +
1000

πr2
) = 2πr2 +

2000

r
.

The �rst and second derivatives are

S ′ = 4πr − 2000

r2

S ′′ = 4π +
4000

r3
.

The critical points are obtained by setting

S ′ = 0

4πr − 2000

r2
= 0

4πr3 − 2000

r2
= 0
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Setting the numerator zero gives

4πr3 − 2000 = 0

r3 =
500

π

r =
3

√
500

π
≈ 5.42.

So the critical point is r = 5.42. 1 Using the Second Derivative Test, observe that A′′ is
positive at r ≈ 5.42. So V is minimum at

r ≈ 5.42.

The corresponding value of h is

h =
1000

π
3
√

5.422
≈ 10.84.

Therefore, the dimensions of the can that minimize the surface area (and therefore the cost
of materials) is r ≈ 5.42 cm and h ≈ 10.84 cm. 2

Example 11.4. A rectangular page must be constructed with 24 square inches of print,
with top and bottom margins of 1.5 inches and left and right margins of 1 inch. What should
the dimensions of the page be in order to use the least amount of paper?

Solution: Suppose the printed portion has length l and width w. The area of the printed
portion is given as 24. So

24 = lw

w =
24

l
.

1Note that 4πr3−2000
r2 = 0 is a rational equation which is zero when the numerator is zero. The numerator

is the cubic equation 4πr3 − 2000. It has one real root and two complex roots. But r cannot be a complex

number so we disregard the complex roots. Further, note that 4πr3−2000
r2 = 0 is unde�ned at r = 0 making

it another critical point. But a solution with r = 0 would not make sense, so we can disregard it. These
reasons must be known for a thorough understanding, even if forgetting them and �nding only the real root
gets you to the �nal answer.

2 See http://samjshah.com/2012/05/31/a-calculus-optimization-poster-project/ for a Calculus Opti-
mization project where students can implement this analysis for various grocery items such as soup cans,
soda cans etc. to determine how �volume optimized� the cans are.
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Since the left and right margins are 1 inch each, the length of the printed portion is l− 2
and since the top and bottom margins are 1.5 inches each, the width is w − 2. The area of
the page is

A = (l + 2)(w + 3).

Substituting the value of w in the above formula gives

A = (l + 2)(
24

l
+ 3) = 30 + 2l +

72

l

The �rst and second derivatives are

A′ = 2− 72

l2

and
A′′ =

144

x3
.

The critical points are

2− 72

l2
= 0

2l2 = 72

l2 = 36

l = ±6.

Since a solution with l = −6 doesn't make sense, we may assume l = 6. Since A′ is positive
when l = 6, by the Second Derivative Test A′ is minimized at

l = 6.

The corresponding w value is

w =
24

l
= 4.

Therefore, the dimensions of the printed area using the least paper are l = 6 inches and
w = 4 inches. �
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When we look at the History of Mathematics we see that Mathematics advanced for
practical reasons as well as through puzzles and games. The next set of optimization problems
orginated as puzzles. All cultures came up with such problems more or less independently and
devised ways of solving them using derivative ideas. For example, during the Edo period
(1603 - 1867) in Japan, people lived in self-imposed isolation from all outside in�uences
and during this time a tradition of writing short poems (haikus) and geometrical problems
on wooden tablets and leaving them in temples as o�erings emerged. This tradition was
called Sangaku, which means mathematical tablet. For example, the famous Japanese poet
Matsuo Basho (1644 - 1694) wrote the following haiku on a Sangaku tablet.

Year after year

On the monkey's face

A monkey's mask.

The next problem is a Sangaku optimization problem. Although the Japanese did not have
the concept of derivative as we do, they managed to solve it using the same sort of ideas. 3

Example 11.5. Find the area of the largest rectangle that can be embedded in a right
triangle.

Solution. Let ABC be the right triangle with legs of length a and b as shown and let x
and y be the length and width, respectively, of rectangle CFED embedded in the triangle.
Area of the rectangle is

A = xy

Observe that Triangle BDE is similar (angles are equal) to Triangle ABC, so the ratio of
sides is the same. Therefore,

y

b
=
a− x
a

.

So

y =
b(a− x)

a
.

3 See http://www.cut-the-knot.org/pythagoras/Sangaku.shtml and
http://www.cut-the-knot.org/pythagoras/QOptimizationSangaku.shtml. As the article notes, it is interest-
ing that Japanese mathematicians of the Edo era wrote a lot about integration but little on the derivative,
other than solving problems like this.
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Substituting the value of y in the area formula gives

A =
x

y
= x

b(a− x)

a
=
b

a
(ax− x2).

The �rst and second derivatives are

A′ =
b

a
(a− 2x)

and

A′′ = −2
b

a
The critical point is

A′ = 0

b

a
(a− 2x) = 0

a− 2x = 0

2x = a

x =
a

2

Since A′′ is always negative (a and b are lengths and therefore positive), by the Second
Derivative Test, x = a

2
is a local maximum. So A is maximized at

x =
a

2

and the corresponding value of y is

y =
b

a
(a− a

2
) =

b

2
.

Therefore, the area of the largest rectangle is ab
4
.

Example 11.6. Find the area of the largest rectangle that can be inscribed in a semi-circle
of radius r.

Solution: Draw a circle centered at (0, 0) and radius r and inscribe a rectangle in it as
shown. The rectangle has length 2x and width y.
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The area of the rectangle is
A = 2xy.

The equation of the circle is
x2 + y2 = r2.

Since the point (x, y) lies on the circle (as shown)

x2 + y2 = r2

y =
√
r2 − x2

Substituting, the value of y in the area formula gives

A = 2xy = 2x
√
r2 − x2

The �rst and second derivatives are

A′ = 2

[
x

1

2
√
r2 − x2

(−2x) +
√
r2 − x2

]
= 2

[
−x2√
r2 − x2

−
√
r2 − x2

]
= 2

[
−x2 + r2 − x2√

r2 − x2

]
=

2(r2 − 2x2)√
r2 − x2

=
2r2 − 4x2√
r2 − x2

and

A′′ =
1

r2 − x2

[√
r2 − x2(−8x)− (2r2 − 4x2)

−2x

2
√
r2 − x2

]
=

1

(r2 − x2) 3
2

[
(r2 − x2)(−8x)− (2r2 − 4x2)(−x)

]
=

1

(r2 − x2) 3
2

[
−8xr2 + 8x3 + 2xr2 − 4x3

]
=

1

(r2 − x2) 3
2

[
−6xr2 + 4x3

]

The critical points are the points where A′ is unde�ned or 0. Observe that A′ is unde�ned
when x = ±r, but it makes no sense geometrically, so we disregard it. Setting the numerator
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equal to zero gives

2(r2 − 2x2) = 0

x = ± r√
2

Observe that when x = r√
2
the value of A′

A′ =
1

(r2 − r2

2
)
3
2

[
−6

r√
2
r2 + 4

r3

8

]
=

1

r3

[
− 6√

2
r3 +

r3

2

]
=

1

r3
√

2
(−11r3)

Since A′ is negative when r√
2
, by the Second Derivative Test, it is a local maximum. So A

is maximized when
x =

r√
2

and the corresponding y value is

y =

√
r2 −

(
r√
2

)2

=
r√
2
.

The area of the largest rectangle is

A =
2r√

2

r√
2

= r2

�

The di�erentiation in the above problem would have been easier if we were given a speci�c
value of r. In the next two problems we reduce the generality of the question by talking
about speci�c geometrical objects and speci�c points.

Example 11.7. Find the point on the line y = 4x+ 7 that is closest to the origin (0, 0).

Solution: Let (x, y) be a point on the line y = 4x+ 7 and let d be the distance from (x, y)
to the origin (0, 0).

d =
√

(x− 0)2 + (y − 0)2 =
√
x2 + y2.

It would be di�cult to maximize d, so we maximize d2. (This portion is not obvious and is
explained in further detail after the solution.) Substitute the value of y = 4x+ 7 to get

d2 = x2 + (4x+ 7)2 = x2 + 16x2 + 56x+ 49 = 17x2 + 56x+ 49
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For the purpose of applying the Second Derivative Test let us call this function

f(x) = 17x2 + 56x+ 49

f ′(x) = 34x+ 56

The critical point is x = −56
34
≈ −1.65. Since the second derivative is f ′′(x) = 34, which

is positive, x = −1.64 is a minimum. The corresponding y is y = 4x + 7 = 0.41. Therefore
the point on the graph closest to the origin is (−1.65, 0.4). �

Now let us understand in more detail why we can naximize d2 in place of d in the above
problem. Intuitively, consider an increasing function f and let g = f 2. Then g is also an
increasing function. So f and g will have the same local extrema. Formally, a function
f is strictly increasing on an interval [a, b] if, for any x1, x2 ∈ [a, b] such that x1 < x2,
f(x1) < f(x2).

Theorem 11.8. Suppose f is a di�erentiable function on an interval [a, b] and that g is a
di�erentiable, strictly increasing function on the interval [f(a), f(b)]. Let h = g ◦ f , that is
h(x) = g(f(x)). Then the local maxima and minima of h are the same as the local maxima
and minima of f , respectively.

Proof. Suppose c is a local maximum of f . By de�nition of local maximum for some interval
(d, e) containing c,

f(x) < f(c)

for all x ∈ (d, e) distinct from c. Since g is strictly increasing,

g(f(x)) < g(f(c)).

Therefore c is a local maximum for g ◦ f .
Similarly, if c is a local minimum of f , then c must also be a local minimum for h. �

Example 11.9. Find the point on the parabola x = y2

2
that is closest to the point (1, 4).

Solution: Let (x, y) be a point on the parabola x = y2

2
and let f be the square of the

distance of (x, y) from x = y2

2
. Observe that

f = (x− 1)2 + (y − 4)2

and replacing x = y2

2
gives

f = (
1

2
y2 − 1)2 + (y − 4)2.
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The �rst and second derivatives are

f ′ = 2(
1

2
y2 − 1)y + 2(y − 4) = y3 − 2y + 2y − 8 = y3 − 8

f ′′ = 3y2

The real root of y3 − 8 = 0 is y = 2. So f has a critical point at y = 2. Since f ′′ is positive
when y = 2, by the Second Derivative Test, y = 2 is a local minimum. So f is minimized
by y = 2 and the corresponding value of x is x = y2

2
= 22

2
= 2. Therefore the point on the

parabola closest to (1, 2) is (2, 2).

Example 11.10. Find the points on the ellipse 4x2 + y2 = 4 farthest from (1, 0).

Solution: Let (x, y) be a point on the ellipse and let f be the square of the distance from
(x, y) to (1, 0). Then

f = (x− 1)2 + y2.

Using the equation of the ellipse, we can write y2 = 4− 4x2, so we can substitute in f to
obtain

f = (x− 1)2 + 4− 4x2 = 5− 2x− 3x2

The �rst and second derivatives are

f ′′ = −2− 6x

f ′′(x) = −6.

The critical point is x = −1
3
. Since f ′′ is negative, x = −1

3
is a local maximum. The

corresponding y values are

±

√
4− 4

(
1

9

)
= ±

√
32

9
= ±4

√
2

3
.

Therefore, the farthest points from (1, 0) on the ellipse are (−1
3
,±4

√
2

3
). �

Practice Problems
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(1) Find two positive numbers that satisfy the following constraints:

a) The sum is 100 with maximum product

b) the product is 192 with maximum sum

c) The product is 192 and the sum of the �rst plus three times the second is a
minimum

d) The sum of the �rst and twice the second is 100 with maximum product

(2) A farmer as 2400 meters of fencing and wants to fence o� a rectangular �eld that
borders a straight river. He needs no fence along the river. What are the dimensions
of the �eld that has the largest area?

(3) A farmer wants to fence a rectangular pasture adjacent to a river. The pasture must
contain 180,000 square meters in order to provide enough grass for the herd. What
dimensions would require the least amount of fencing if no fencing is needed along
the river?

(4) A manufacturer wants to design an open box having a square base and surface area
of 108 square inches. What dimensions will produce a box with maximum volume?

(5) Find the dimensions of a rectangular solid with a square base of maximum volume
if the surface area is 160 square inches.

(6) A rectangular page has 24 square inches of print. Margins at the top and bottom
are 1.5 inches and on the left and right are 1 inch What should the dimensions of
the page be so that the smallest number of pages are used?

(7) A rectangular page is to contain 30 square inches of print. The margins on each side
are 1 inch. Find the dimensions of the page so that the smallest amount of paper is
used.

(8) A cylindrical can is to be made to hold 1000 cubic centimeters of oil. Find the
dimensions that minimize the cost of the metal to manufacture the can.

(9) Find the point on the parabola y2 = 2x that is closest to the point (1, 4).

(10) Find the area of the largest rectangle that can be inscribed in a semi-circle of radius
r.

(11) A rectangular box with a square base and no top is to have a volume of 108 cubic
inches. Find the dimensions of the box that require the smallest amount of material.
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